This study addresses a crucial necessity in the field of noninvasive liver fibrosis diagnosis by introducing the concept of continuous shear wave elastography (C-SWE), utilizing an external vibration source and color Doppler imaging. However, an application of C-SWE to assess liver elasticity, a deep region within the human body, arises an issue of signal instability in the obtained data. To tackle this challenge, this work proposes a method involving the acquisition of multiple frames of datasets, which are subsequently compressed.
View Article and Find Full Text PDFPurpose: Continuous shear wave elastography (C-SWE) can be expected to be applied to portable muscle elasticity diagnosis. To establish diagnostic technology, it will be necessary to improve measurement techniques and quantitative measurement accuracy.
Methods: In this study, we investigated two screen scores: the quality index (Q-index), which determines whether the intensity of a power Doppler image is appropriate, and the shear wave propagation direction index (SWDI), which determines the uniformity of shear wave propagation.
Ultrasound is highly biopermeable and can non-invasively penetrate deep into the brain. Stimulation with patterned low-intensity ultrasound can induce sustained inhibition of neural activity in humans and animals, with potential implications for research and therapeutics. Although mechanosensitive channels are involved, the cellular and molecular mechanisms underlying neuromodulation by ultrasound remain unknown.
View Article and Find Full Text PDFA method for measuring the mechanical quality factor (Q factor) of materials in large-amplitude flexural vibrations was devised on the basis of the original definition of the Q factor. The Q factor, the ratio of the reactive energy to the dissipated energy, was calculated from the vibration velocity distribution. The bar thickness was selected considering the effect of the thickness on the estimation error.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
December 2015
With their characteristics of low density and elastic moduli, polymers are promising materials for making ultrasonic motors (USMs) with high energy density. Although it has been believed for a long time that polymers are too lossy to be applied to high-amplitude vibrators, there are several new polymers that exhibit excellent vibration characteristics. First, we measure the damping coefficients of some functional polymers to explore the applicability of polymers as vibrators for USMs.
View Article and Find Full Text PDFJ Med Ultrason (2001)
July 2012
Introduction: Acoustic radiation force (ARF) elastography is potentially useful for imaging the elasticity of human tissue. Because a "push wave" that is used to generate ARF is a long burst wave comparable to that used in regular clinical imaging, detailed investigation of its safety is required.
Materials And Methods: We focus on the transient temperature rise in the far field, where the beam paths are overlapped.