Publications by authors named "Marie St-Laurent"

Brain decoding aims to infer cognitive states from patterns of brain activity. Substantial inter-individual variations in functional brain organization challenge accurate decoding performed at the group level. In this paper, we tested whether accurate brain decoding models can be trained entirely at the individual level.

View Article and Find Full Text PDF

Mnemonic representations vary in fidelity, sharpness, and strength-qualities that can be examined using both introspective judgements of mental states and objective measures of brain activity. Subjective and objective measures are both valid ways of "reading out" the content of someone's internal mnemonic states, each with different strengths and weaknesses. St-Laurent and colleagues (2015) compared the neural correlates of memory vividness ratings with patterns of neural reactivation evoked during memory recall and found considerable overlap between the two, suggesting a common neural basis underlying these different markers of representational quality.

View Article and Find Full Text PDF

As clear memories transport us back into the past, the brain also revives prior patterns of neural activity, a phenomenon known as neural reactivation. While growing evidence indicates a link between neural reactivation and typical variations in memory performance in healthy individuals, it is unclear how and to what extent reactivation is disrupted by a memory disorder. The current study characterizes neural reactivation in a case of amnesia using Multivoxel Pattern Analysis (MVPA).

View Article and Find Full Text PDF

Objectives: Aging can reduce the specificity with which memory episodes are represented as distributed patterns of brain activity. It remains unclear, however, whether repeated encoding and retrieval of stimuli modulate this decline. Memory repetition is thought to promote semanticization, a transformative process during which episodic memory becomes gradually decontextualized and abstracted.

View Article and Find Full Text PDF

The dynamic process of memory consolidation involves a reorganization of brain regions that support a memory trace over time, but exactly how the network reorganizes as the memory changes remains unclear. We present novel converging evidence from studies of animals (rats) and humans for the time-dependent reorganization and transformation of different types of memory as measured both by behavior and brain activation. We find that context-specific memories in rats, and naturalistic episodic memories in humans, lose precision over time and activity in the hippocampus decreases.

View Article and Find Full Text PDF

Half a century ago, Donald Hebb posited that mental imagery is a constructive process that emulates perception. Specifically, Hebb claimed that visual imagery results from the reactivation of neural activity associated with viewing images. He also argued that neural reactivation and imagery benefit from the re-enactment of eye movement patterns that first occurred at viewing (fixation reinstatement).

View Article and Find Full Text PDF

We assessed whether perceptual richness, a defining feature of episodic memory, depends on the engagement and integrity of the hippocampus during episodic memory retrieval. We tested participants' memory for complex laboratory events (LEs) that differed in perceptual content: short stories were either presented as perceptually rich film clips or as perceptually impoverished narratives. Participants underwent functional magnetic resonance imaging (fMRI) while retrieving these LEs (narratives and clips), as well as events from their personal life (autobiographical memories).

View Article and Find Full Text PDF

Episodic memories undergo qualitative changes with time, but little is known about how different aspects of memory are affected. Different types of information in a memory, such as perceptual detail, and central themes, may be lost at different rates. In patients with medial temporal lobe damage, memory for perceptual details is severely impaired, while memory for central details is relatively spared.

View Article and Find Full Text PDF

According to the principle of reactivation, memory retrieval evokes patterns of brain activity that resemble those instantiated when an event was first experienced. Intuitively, one would expect neural reactivation to contribute to recollection (i.e.

View Article and Find Full Text PDF

Although memory recall is known to be reduced with normal aging, little is known about the patterns of brain activity that accompany these recall failures. By assessing faulty memory, we can identify the brain regions engaged during retrieval attempts in the absence of successful memory and determine the impact of aging on this functional activity. We used functional magnetic resonance imaging to examine age differences in brain activity associated with memory failure in three memory retrieval tasks: autobiographical (AM), episodic (EM) and semantic (SM).

View Article and Find Full Text PDF

In temporal lobe epilepsy and lobectomy, deficits in emotion identification have been found consistently, but there is limited evidence for complex social inference skills such as theory of mind. Furthermore, risk factors and the specific neural underpinnings of these deficits in this population are unclear. We investigated these issues using a comprehensive range of social inference tasks (emotion identification and comprehension of sincere, deceitful and sarcastic social exchanges) in individuals with temporal lobe epilepsy or lobectomy (n = 87).

View Article and Find Full Text PDF

We investigated how aging affects the neural specificity of mental replay, the act of conjuring up past experiences in one's mind. We used functional magnetic resonance imaging (fMRI) and multivariate pattern analysis to quantify the similarity between brain activity elicited by the perception and memory of complex multimodal stimuli. Young and older human adults viewed and mentally replayed short videos from long-term memory while undergoing fMRI.

View Article and Find Full Text PDF

Perceptual richness, a defining feature of episodic memory, emerges from the reliving of multimodal sensory experiences. Although the importance of the medial temporal lobe (MTL) to episodic memory retrieval is well documented, the features that determine its engagement are not well characterized. The current study assessed the relationship between MTL function and episodic memory's perceptual richness.

View Article and Find Full Text PDF

Autobiographical memory (AM) provides the opportunity to study interactions among brain areas that support the search for a specific episodic memory (construction), and the later experience of mentally reliving it (elaboration). While the hippocampus supports both construction and elaboration, it is unclear how hippocampal-neocortical connectivity differs between these stages, and how this connectivity involves the anterior and posterior segments of the hippocampus, as these have been considered to support the retrieval of general concepts and recollection processes, respectively. We acquired fMRI data in 18 healthy participants during an AM retrieval task in which participants were asked to access a specific AM (construction) and then to recollect it by recovering as many episodic details as possible (elaboration).

View Article and Find Full Text PDF

Predicting postsurgery memory decline is crucial to clinical decision-making for individuals with mesial temporal lobe epilepsy (mTLE) who are candidates for temporal lobe excisions. Extensive neuropsychological testing is critical to assess risk, but the numerous test scores it produces can make deriving a formal prediction of cognitive change quite complex. In order to benefit from the information contained in comprehensive memory assessment, we used principal component analysis (PCA) to simplify neuropsychological test scores (presurgical and pre- to postsurgical change) obtained from a cohort of 56 patients with mTLE into a few easily interpretable latent components.

View Article and Find Full Text PDF

We used fMRI to assess the neural correlates of autobiographical, semantic, and episodic memory retrieval in healthy young and older adults. Participants were tested with an event-related paradigm in which retrieval demand was the only factor varying between trials. A spatio-temporal partial least square analysis was conducted to identify the main patterns of activity characterizing the groups across conditions.

View Article and Find Full Text PDF

Objectively measuring the experiential phenomenon of "reliving" a personal memory without relying on the retrieval of specific contents such as richness/vividness of perceptual details is difficult. There are, however, some circumstances in which an indirect measure that does not require conscious retrieval or deliberate assessment of such information, would be quite useful (e.g.

View Article and Find Full Text PDF

Patients with unilateral temporal lobe epilepsy from hippocampal origin and patients with unilateral surgical excision of an epileptic focus located in the medial temporal lobe were compared to healthy controls on a version of the Autobiographical Interview (AI) adapted to assess memory for event-specific and generic personal episodes. For both types of episodes, patients with unilateral (left and right) temporal lobe epilepsy or excision (TLE) reported fewer internal details, which are bits of information pertaining to the recollected episode. The source of this deficit was mainly the paucity of perceptual information about the personal episodes, but temporal and spatial information was also deficient.

View Article and Find Full Text PDF

Rats with lesions to the anterior or posterior (retrosplenial) region of the cingulate cortex and rats with lesions that included both the anterior and posterior cingulate cortex were tested on a visual-spatial conditional task in which they had to learn to approach one of the two objects depending on the spatial context within which they were embedded. Lesions restricted to either the anterior or the retrosplenial cingulate region did not impair learning of this task which is known to be very sensitive to the effects of hippocampal lesions. Complete lesions of the cingulate cortex gave rise to only a minor retardation in learning.

View Article and Find Full Text PDF

Unilateral lesions to the anterior thalamic nuclei (ATN) and the hippocampus (H) were made in opposite hemispheres in the rat to examine whether these brain structures form part of a functional neural pathway underlying spatial learning and memory. In the first experiment, rats were tested on a spatial-visual conditional associative task in which they had to learn to approach one of two stimuli depending on the spatial context in which the stimuli were embedded. The rats were subsequently trained on delayed forced alternation, a spatial working memory task known to be sensitive to the effects of ATNxH damage.

View Article and Find Full Text PDF