Publications by authors named "Marie Sand Traberg"

Background: This study examines how shield-triggered autoinjectors (AIs), for subcutaneous drug delivery, affect injection depth. It focuses on shield size and applied force, parameters that could potentially lead to inadvertent intramuscular (IM) injections due to tissue compression.

Method: A blinded ex-vivo study was performed to assess the impact of shield size and applied force on injection depth.

View Article and Find Full Text PDF

The left atrium (LA) hemodynamic indices hold prognostic value in various cardiac diseases and disorders. To understand the mechanisms of these conditions and to assess the performance of cardiac devices and interventions, in vitro models can be used to replicate the complex physiological interplay between the pulmonary veins, LA, and left ventricle. In this study, a comprehensive and adaptable in vitro model was created.

View Article and Find Full Text PDF

Background: Pen needles and autoinjectors are necessary for millions of patients needing injectable drug treatment but pose economic and environmental burdens. A durable device with a multiuse needle could reduce cost and improve user experience. This study explores a novel robust needle tip (EXP) designed for multiple uses and durability against hooking.

View Article and Find Full Text PDF

Purpose: This paper investigates the accuracy of blood flow velocities simulated from a geometry prescribed computational fluid dynamics (CFD) pipeline by applying it to a dynamic heart phantom. The CFD flow patterns are compared to a direct flow measurement by ultrasound vector flow imaging (VFI). The hypothesis is that the simulated velocity magnitudes are within one standard deviation of the measured velocities.

View Article and Find Full Text PDF

This study presents a method for noninvasive pressure gradient estimation, which allows the detection of small pressure differences with higher precision compared to invasive catheters. It combines a new method for estimating the temporal acceleration of the flowing blood with the Navier-Stokes equation. The acceleration estimation is based on a double cross-correlation approach, which is hypothesized to minimize the influence of noise.

View Article and Find Full Text PDF

Row-column (RC) arrays have the potential to yield full 3-D ultrasound imaging with a greatly reduced number of elements compared to fully populated arrays. They, however, have several challenges due to their special geometry. This review article summarizes the current literature for RC imaging and demonstrates that full anatomic and functional imaging can attain a high quality using synthetic aperture (SA) sequences and modified delay-and-sum beamforming.

View Article and Find Full Text PDF

In this work, the accuracy of row-column tensor velocity imaging (TVI), i.e., 3-D vector flow imaging (VFI) in 3-D space over time, is quantified on a complex, clinically relevant flow.

View Article and Find Full Text PDF

Local pressure differences estimated using vector flow imaging (VFI) and direct catheterization in seven carotid bifurcation phantoms were compared with simulated pressure fields. VFI correlated strongly with simulated peak pressure differences (r = 0.99, p < 0.

View Article and Find Full Text PDF

This article presents an imaging scheme capable of estimating the full 3-D velocity vector field in a volume using row-column addressed arrays (RCAs) at a high volume rate. A 62 + 62 RCA array is employed with an interleaved synthetic aperture sequence. It contains repeated emissions with rows and columns interleaved with B-mode emissions.

View Article and Find Full Text PDF

Non-invasive assessment is preferred for monitoring arteriovenous dialysis fistulas (AVFs). Vector concentration assesses flow complexity, which may correlate with stenosis severity. We determined whether vector concentration could assess stenosis severity in dysfunctional AVFs.

View Article and Find Full Text PDF

The objective of the study described here was to investigate the accuracy and precision of a plane wave 2-D vector flow imaging (VFI) method in laminar and complex blood flow conditions in the healthy carotid artery. The approach was to study (i) the accuracy for complex flow by comparing the velocity field from a computational fluid dynamics (CFD) simulation to VFI estimates obtained from the scan of an anthropomorphic flow phantom and from an in vivo scan; (ii) the accuracy for laminar unidirectional flow in vivo by comparing peak systolic velocities from VFI with magnetic resonance angiography (MRA); (iii) the precision of VFI estimation in vivo at several evaluation points in the vessels. The carotid artery at the bifurcation was scanned using both fast plane wave ultrasound and MRA in 10 healthy volunteers.

View Article and Find Full Text PDF

A noninvasive method for estimating intravascular pressure changes using 2-D vector velocity is presented. The method was first validated on computational fluid dynamic (CFD) data and with catheter measurements on phantoms. Hereafter, the method was tested in vivo at the carotid bifurcation and at the aortic valve of two healthy volunteers.

View Article and Find Full Text PDF

Perthes' disease is a destructive hip joint disorder characterized by malformation of the femoral head in young children. While the morphological changes have been widely studied, the biomechanical effects of these changes still need to be further elucidated. The objective of this study was to develop a method to investigate the biomechanical alterations in Perthes' disease by finite element (FE) contact modeling using MRI.

View Article and Find Full Text PDF