Publications by authors named "Marie S Isidor"

A common approach for understanding how drugs induce their therapeutic effects is to identify the genetic determinants of drug sensitivity. Because 'chemo-genetic profiles' are performed in a pooled format, inference of gene function is subject to several confounding influences related to variation in growth rates between clones. In this study, we developed Method for Evaluating Death Using a Simulation-assisted Approach (MEDUSA), which uses time-resolved measurements, along with model-driven constraints, to reveal the combination of growth and death rates that generated the observed drug response.

View Article and Find Full Text PDF

Lactate is a circulating metabolite and a signalling molecule with pleiotropic physiological effects. Studies suggest that lactate modulates energy balance by lowering food intake, inducing adipose browning and increasing whole-body thermogenesis. Yet, like many other metabolites, lactate is often commercially produced as a counterion-bound salt and typically administered in vivo through hypertonic aqueous solutions of sodium L-lactate.

View Article and Find Full Text PDF

DNA damage can activate apoptotic and non-apoptotic forms of cell death; however, it remains unclear what features dictate which type of cell death is activated. We report that p53 controls the choice between apoptotic and non-apoptotic death following exposure to DNA damage. In contrast to the conventional model, which suggests that p53-deficient cells should be resistant to DNA damage-induced cell death, we find that p53-deficient cells die at high rates following DNA damage, but exclusively using non-apoptotic mechanisms.

View Article and Find Full Text PDF

Exploring mechanisms responsible for brown adipose tissue's (BAT) high metabolic activity is crucial to exploit its energy-dissipating ability for therapeutic purposes. Basigin (Bsg), a multifunctional highly glycosylated transmembrane protein, was recently proposed as one of the 98 critical markers allowing to distinguish 'white' and 'brown' adipocytes, yet its function in thermogenic brown adipocytes is unknown. Here, we report that Bsg is negatively associated with obesity in mice.

View Article and Find Full Text PDF

Background: In obesity, adipose tissue dysfunction resulting from excessive fat accumulation leads to systemic insulin resistance (IR), the underlying alteration of Type 2 Diabetes. The specific pathways dysregulated in dysfunctional adipocytes and the extent to which it affects adipose metabolic functions remain incompletely characterized.

Methods: We interrogated the transcriptional adaptation to increased adiposity in association with insulin resistance in visceral white adipose tissue from lean men, or men presenting overweight/obesity (BMI from 19 to 33) and discordant for insulin sensitivity.

View Article and Find Full Text PDF

Key Points: Afadin is a ubiquitously expressed scaffold protein with a recently discovered role in insulin signalling and glucose metabolism. Insulin-stimulated phosphorylation of Afadin at S1795 occurs in insulin-responsive tissues such as adipose tissue, muscle, liver, pancreas and heart. Afadin abundance and Afadin phosphorylation are dynamically regulated in metabolic tissues during diet-induced obesity progression.

View Article and Find Full Text PDF

Thermogenic adipocytes possess a therapeutically appealing, energy-expending capacity, which is canonically cold-induced by ligand-dependent activation of β-adrenergic G protein-coupled receptors (GPCRs). Here, we uncover an alternate paradigm of GPCR-mediated adipose thermogenesis through the constitutively active receptor, GPR3. We show that the N terminus of GPR3 confers intrinsic signaling activity, resulting in continuous Gs-coupling and cAMP production without an exogenous ligand.

View Article and Find Full Text PDF

Objective: Increasing adaptive thermogenesis by stimulating browning in white adipose tissue is a promising method of improving metabolic health. However, the molecular mechanisms underlying this transition remain elusive. Our study examined the molecular determinants driving the differentiation of precursor cells into thermogenic adipocytes.

View Article and Find Full Text PDF

Utilizing the thermogenic capacity of brown adipose tissue is a potential anti-obesity strategy; therefore, the mechanisms controlling expression of thermogenesis-related genes are of interest. Pyruvate kinase (PK) catalyzes the last step of glycolysis and exists as four isoenzymes: PK, liver, PK, red blood cell, PK, muscle (PKM1 and PKM2). PKM2 has both glycolytic and nuclear functions.

View Article and Find Full Text PDF

Insulin orchestrates metabolic homeostasis through a complex signaling network for which the precise mechanisms controlling its fine-tuning are not completely understood. Here, we report that Afadin, a scaffold protein, is phosphorylated on S1795 (S1718 in humans) in response to insulin in adipocytes, and this phosphorylation is impaired with obesity and insulin resistance. In turn, loss of Afadin enhances the response to insulin in adipose tissues via upregulation of the insulin receptor protein levels.

View Article and Find Full Text PDF

Cyclooxygenases are known as important regulators of metabolism and immune processes via conversion of C20 fatty acids into various regulatory lipid mediators, and cyclooxygenase activity has been implicated in browning of white adipose tissues. We generated transgenic (TG) C57BL/6 mice expressing the Ptgs2 gene encoding cyclooxygenase-2 (COX-2) in mature adipocytes. TG mice fed a high-fat diet displayed marginally lower weight gain with less hepatic steatosis and a slight improvement in insulin sensitivity, but no difference in glucose tolerance.

View Article and Find Full Text PDF

During thermogenic activation, brown adipocytes take up large amounts of glucose. In addition, cold stimulation leads to an upregulation of glycolytic enzymes. Here we have investigated the importance of glycolysis for brown adipocyte glucose consumption and thermogenesis.

View Article and Find Full Text PDF

Objective: Functional investigation of novel gene/protein targets associated with adipocyte differentiation or function heavily relies on efficient and accessible tools to manipulate gene expression in adipocytes in vitro. Recent advances in gene-editing technologies such as CRISPR-Cas9 have not only eased gene editing but also greatly facilitated modulation of gene expression without altering the genome. Here, we aimed to develop and validate a competent in vitro adipocyte model of controllable functionality as well as multiplexed gene manipulation in adipocytes, using the CRISPRa "SAM" system and siRNAs to simultaneously overexpress and silence selected genes in the same cell populations.

View Article and Find Full Text PDF

Adipose tissue takes up glucose and releases lactate, thereby contributing significantly to systemic glucose and lactate homeostasis. This implies the necessity of upregulation of net acid and lactate flux capacity during adipocyte differentiation and function. However, the regulation of lactate- and acid/base transporters in adipocytes is poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • The study developed stable human brown and white pre-adipocyte cell models by integrating the human telomerase reverse transcriptase (TERT), allowing for extensive testing of their characteristics and functions.
  • Results showed that brown adipocytes (TERT-hBA) had higher levels of thermogenic activity and were more responsive to stimulation compared to white adipocytes (TERT-hWA), which can still undergo 'browning' to gain some brown fat characteristics.
View Article and Find Full Text PDF

Brown adipose tissue takes up large amounts of glucose during cold exposure in mice and humans. Here we report an induction of glucose transporter 1 expression and increased expression of several glycolytic enzymes in brown adipose tissue from cold-exposed mice. Accordingly, these genes were also induced after β-adrenergic activation of cultured brown adipocytes, concomitant with accumulation of hypoxia inducible factor-1α (HIF-1α) protein levels.

View Article and Find Full Text PDF

Brown adipose tissue is a promising therapeutic target for opposing obesity, glucose intolerance and insulin resistance. The ability to modulate gene expression in mature brown adipocytes is important to understand brown adipocyte function and delineate novel regulatory mechanisms of non-shivering thermogenesis. The aim of this study was to optimize a lipofection-based small interfering RNA (siRNA) transfection protocol for efficient silencing of gene expression in mature brown adipocytes.

View Article and Find Full Text PDF

The incretin hormone glucagon-like peptide-1 (GLP-1) is an important insulin secretagogue and GLP-1 analogs are used for the treatment of type 2 diabetes. GLP-1 displays antiinflammatory and surfactant-releasing effects. Thus, we hypothesize that treatment with GLP-1 analogs will improve pulmonary function in a mouse model of obstructive lung disease.

View Article and Find Full Text PDF

Background: Increased adipose thermogenesis is being considered as a strategy aimed at preventing or reversing obesity. Thus, regulation of the uncoupling protein 1 (UCP1) gene in human adipocytes is of significant interest. Retinoic acid (RA), the carboxylic acid form of vitamin A, displays agonist activity toward several nuclear hormone receptors, including RA receptors (RARs) and peroxisome proliferator-activated receptor δ (PPARδ).

View Article and Find Full Text PDF

Objective: Estrogen-related receptors (ERRs) are important regulators of energy metabolism. Here we investigated the hypothesis that ERRγ impacts on differentiation and function of brown adipocytes.

Design And Methods: We characterize the expression of ERRγ in adipose tissues and cell models and investigate the effects of modulating ERRγ activity on UCP1 gene expression and metabolic features of brown and white adipocytes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionrrdp5qlcnfhtkitkfnp3fb989j6pqf7j): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once