Nucleic Acids Res
September 2020
Cilia assembly is under strict transcriptional control during animal development. In vertebrates, a hierarchy of transcription factors (TFs) are involved in controlling the specification, differentiation and function of multiciliated epithelia. RFX TFs play key functions in the control of ciliogenesis in animals.
View Article and Find Full Text PDFAcrocallosal syndrome (ACLS) is a rare genetic disorder characterized by agenesis or hypoplasia of corpus callosum (CC), polydactyly, craniofacial dysmorphism and severe intellectual deficiency. We previously identified KIF7, a key ciliary component of the Sonic hedgehog (SHH) pathway, as being a causative gene for this syndrome, thus including ACLS in the group of ciliopathies. In both humans and mice, KIF7 depletion leads to abnormal GLI3 processing and over-activation of SHH target genes.
View Article and Find Full Text PDFThe ciliary transition zone (TZ) is a complex structure found at the cilia base. Defects in TZ assembly are associated with human ciliopathies. In most eukaryotes, three protein complexes (CEP290, NPHP, and MKS) cooperate to build the TZ.
View Article and Find Full Text PDFThe mammalian striatum controls sensorimotor and psychoaffective functions through coordinated activities of its two striatonigral and striatopallidal output pathways. Here we show that retinoic acid receptor β (RARβ) controls development of a subpopulation of GABAergic, Gad65-positive striatonigral projection neurons. In Rarb(-/-) knock-out mice, concomitant reduction of Gad65, dopamine receptor D1 (Drd1), and substance P expression at different phases of prenatal development was associated with reduced number of Drd1-positive cells at birth, in contrast to normal numbers of striatopallidal projection neurons expressing dopamine receptor D2.
View Article and Find Full Text PDFBackground: Orodental diseases include several clinically and genetically heterogeneous disorders that can present in isolation or as part of a genetic syndrome. Due to the vast number of genes implicated in these disorders, establishing a molecular diagnosis can be challenging. We aimed to develop a targeted next-generation sequencing (NGS) assay to diagnose mutations and potentially identify novel genes mutated in this group of disorders.
View Article and Find Full Text PDFSpermatogenesis consists broadly of three phases: proliferation of diploid germ cells, meiosis, and finally extensive differentiation of the haploid cells into effective delivery vehicles for the paternal genome. Despite detailed characterization of many haploid developmental steps leading to sperm, only fragmentary information exists on the control of gene expression underlying these processes. Here we report that the RFX2 transcription factor is a master regulator of genes required for the haploid phase.
View Article and Find Full Text PDFAgenesis of the corpus callosum (AgCC) is a frequent brain disorder found in over 80 human congenital syndromes including ciliopathies. Here, we report a severe AgCC in Ftm/Rpgrip1l knockout mouse, which provides a valuable model for Meckel-Grüber syndrome. Rpgrip1l encodes a protein of the ciliary transition zone, which is essential for ciliogenesis in several cell types in mouse including neuroepithelial cells in the developing forebrain.
View Article and Find Full Text PDFPrimary cilia are complex subcellular structures that play key roles during embryogenesis by controlling the cellular response to several signaling pathways. Defects in the function and/or structure of primary cilia underlie a large number of human syndromes collectively referred to as ciliopathies. Often, ciliopathies are associated with mental retardation (MR) and malformation of the corpus callosum.
View Article and Find Full Text PDFInner ear mechanosensory hair cells transduce sound and balance information. Auditory hair cells emerge from a Sox2-positive sensory patch in the inner ear epithelium, which is progressively restricted during development. This restriction depends on the action of signaling molecules.
View Article and Find Full Text PDFBackground: The RSK2 gene is responsible for Coffin-Lowry syndrome, an X-linked dominant genetic disorder causing mental retardation, skeletal growth delays, with craniofacial and digital abnormalities typically associated with this syndrome. Craniofacial and dental anomalies encountered in this rare disease have been poorly characterized.
Methodology/principal Findings: We examined, using X-Ray microtomographic analysis, the variable craniofacial dysmorphism and dental anomalies present in Rsk2 knockout mice, a model of Coffin-Lowry syndrome, as well as in triple Rsk1,2,3 knockout mutants.
We have investigated the effects of tCFA15, a non-peptidic compound, on the differentiation of neural stem cell-derived neurospheres, and have found that tCFA15 promotes their differentiation into neurons and reduces their differentiation into astrocytes, in a dose-dependent manner. This response is reminiscent of that resulting from the loss-of-function of Notch signaling after inactivation of the Delta-like 1 (Dll1) gene. Further analysis of the expression of genes from the Notch pathway by reverse transcriptase-PCR revealed that tCFA15 treatment results in a consistent decrease in the level of Notch1 mRNA.
View Article and Find Full Text PDFBackground: In order to fulfill their chemosensory function, olfactory neurons are in direct contact with the external environment and are therefore exposed to environmental aggressive factors. Olfaction is maintained through life because, unlike for other sensory neuroepithelia, olfactory neurons have a unique capacity to regenerate after trauma. The mechanisms that control the ontogenesis and regenerative ability of these neurons are not fully understood.
View Article and Find Full Text PDFRetinoic acid (RA), an active derivative of the liposoluble vitamin A (retinol), acts as an important signaling molecule during embryonic development, regulating phenomenons as diverse as anterior-posterior axial patterning, forebrain and optic vesicle development, specification of hindbrain rhombomeres, pharyngeal arches and second heart field, somitogenesis, and differentiation of spinal cord neurons. This small molecule directly triggers gene activation by binding to nuclear receptors (RARs), switching them from potential repressors to transcriptional activators. The repertoire of RA-regulated genes in embryonic tissues is poorly characterized.
View Article and Find Full Text PDFBackground: One of the key questions in developmental biology is how, from a relatively small number of conserved signaling pathways, is it possible to generate organs displaying a wide range of shapes, tissue organization, and function. The dentition and its distinct specific tooth types represent a valuable system to address the issues of differential molecular signatures. To identify such signatures, we performed a comparative transcriptomic analysis of developing murine lower incisors, mandibular molars and maxillary molars at the developmental cap stage (E14.
View Article and Find Full Text PDFStudies in avian models have demonstrated an involvement of retinoid signaling in early neural tube patterning. The roles of this signaling pathway at later stages of spinal cord development are only partly characterized. Here we use Raldh2-null mouse mutants rescued from early embryonic lethality to study the consequences of lack of endogenous retinoic acid (RA) in the differentiating spinal cord.
View Article and Find Full Text PDFThe eye field is initially a large single domain at the anterior end of the neural plate and is the first indication of optic potential in the vertebrate embryo. During the course of development, this domain is subject to interactions that shape and refine the organogenic field. The action of the prechordal mesoderm in bisecting this single region into two bilateral domains has been well described, however the role of signalling interactions in the further restriction and refinement of this domain has not been previously characterised.
View Article and Find Full Text PDFIn a search for inducers of neuronal differentiation to treat neurodegenerative diseases such as Alzheimer's disease, a series of indole fatty alcohols (IFAs) were prepared. 13c (n = 18) was able to promote the differentiation of neural stem cell derived neurospheres into neurons at a concentration of 10 nM. Analysis of the expression of the Notch pathway genes in neurospheres treated during the differentiation phase with 13c (n = 18) revealed a significant decrease in the transcription of the Notch 4 receptor.
View Article and Find Full Text PDF