Publications by authors named "Marie Lux"

Protocol design complexity, and associated study volunteer burden, negatively impact patient recruitment and retention as well as overall research and development productivity. Complex protocols reduce the willingness of potential clinical trial participants to enroll and reduce retention rates. There have been few systematic assessments of protocol design characteristics to determine the burden placed on study volunteers, although such an assessment would offer a compelling opportunity to optimize trial designs and improve recruitment and retention performance.

View Article and Find Full Text PDF

Lung diseases are among the more representative causes of mortality and morbidity worldwide and gene therapy is considered as a promising therapeutic approach for their treatment. However the design of efficient nucleic acid carriers for airway administration still is a challenge and there is a pressing need for new developments in this field. Herein, new synthetic DNA carriers based on the conjugation of a phospholipid and C12E4, a nonionic detergent, are developed.

View Article and Find Full Text PDF

The ability of a nonviral nucleic acid carrier to deliver its cargo to cells with low associated toxicity is a critical issue for clinical applications of gene therapy. We describe biodegradable cationic DOPC-C12 E4 conjugates in which transfection efficiency is based on a Trojan horse strategy. In situ production of the detergent compound C12 E4 through conjugate hydrolysis within the acidic endosome compartment was expected to promote endosome membrane destabilization and subsequent release of the lipoplexes into cytosol.

View Article and Find Full Text PDF

Phospholipid-detergent conjugates are proposed as fusogenic carriers for gene delivery. Eleven compounds are prepared and their properties are investigated. The ability of the conjugates to promote fusion with a negatively charged model membrane is determined.

View Article and Find Full Text PDF

Cationic carbon dots were fabricated by pyrolysis of citric acid and bPEI25k under microwave radiation. Various nanoparticles were produced in a 20-30% yield through straightforward modifications of the reaction parameters (stoichiometry of the reactants and energy supply regime). Particular attention was paid to the purification of the reaction products to ensure satisfactory elimination of the residual starting polyamine.

View Article and Find Full Text PDF