In-depth statistics of individual defects observed during transmission electron microscopy (TEM) experiments are essential for the thorough characterization of materials. In this study, we aim to quantitatively characterize the population of dislocation loops in ion-irradiated CrFeMnNi alloys. To this end, we propose an efficient guideline to prepare TEM micrographs dataset for deep learning analysis, adapted for accurate characterization of microstructures produced by thousands of overlapping defects, a very common situation in TEM images, unfeasible by previous existing methods.
View Article and Find Full Text PDFIt is generally considered that the elementary building blocks of defects in face-centred cubic (fcc) metals, e.g., interstitial dumbbells, coalesce directly into ever larger 2D dislocation loops, implying a continuous coarsening process.
View Article and Find Full Text PDFTo improve the safety of nuclear power plants, a Cr protective layer is deposited on zirconium alloys to enhance oxidation resistance of the nuclear fuel cladding during both in-service and hypothetical accidental transients at High Temperature (HT) in Light Water Reactors. The formation of the CrO film on the coating surface considerably helps in reducing the oxidation kinetics of the zirconium alloy, especially during hypothetic Loss of Coolant Accident (LOCA). However, if the Cr coating is successful to increase the oxidation resistance at HT of the zirconium substrate, for in-service conditions, under neutron irradiation, Cr desquamation has to be avoided to guarantee a safe use of the Cr-coated zirconium alloys.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2021
Oxide dispersion-strengthened materials are reinforced by a (Y, Ti, O) nano-oxide dispersion and thus can be considered as nanostructured materials. In this alloy, most of the nanoprecipitates are (Y, Ti, O) nano-oxides exhibiting a YTiO pyrochlore-like structure. However, the lattice structure of the smallest oxides is difficult to determine, but it is likely to be close to the atomic structure of the host matrix.
View Article and Find Full Text PDF