Publications by authors named "Marie Locard-Paulet"

Mass spectrometry-based proteomics allows the quantification of thousands of proteins, protein variants, and their modifications, in many biological samples. These are derived from the measurement of peptide relative quantities, and it is not always possible to distinguish proteins with similar sequences due to the absence of protein-specific peptides. In such cases, peptide signals are reported in protein groups that can correspond to several genes.

View Article and Find Full Text PDF

Proteins are the primary targets of almost all small molecule drugs. However, even the most selectively designed drugs can potentially target several unknown proteins. Identification of potential drug targets can facilitate design of new drugs and repurposing of existing ones.

View Article and Find Full Text PDF

ADP-ribosylation (ADPr) signaling plays a crucial role in DNA damage response. Inhibitors against the main enzyme catalyzing ADPr after DNA damage, poly(ADP-ribose) polymerase 1 (PARP1), are used to treat patients with breast cancer harboring BRCA1/2 mutations. However, resistance to PARP inhibitors (PARPi) is a major obstacle in treating patients.

View Article and Find Full Text PDF

Imputation techniques provide means to replace missing measurements with a value and are used in almost all downstream analysis of mass spectrometry (MS) based proteomics data using label-free quantification (LFQ). Here we demonstrate how collaborative filtering, denoising autoencoders, and variational autoencoders can impute missing values in the context of LFQ at different levels. We applied our method, proteomics imputation modeling mass spectrometry (PIMMS), to an alcohol-related liver disease (ALD) cohort with blood plasma proteomics data available for 358 individuals.

View Article and Find Full Text PDF

Development and progression of malignancies are accompanied and influenced by alterations in the surrounding immune microenvironment. Understanding the cellular and molecular interactions between immune cells and cancer cells has not only provided important fundamental insights into the disease, but has also led to the development of new immunotherapies. The C-type lectin Dendritic Cell ImmunoReceptor (DCIR) is primarily expressed by myeloid cells and is an important regulator of immune homeostasis, as demonstrated in various autoimmune, infectious and inflammatory contexts.

View Article and Find Full Text PDF

Amoebae found in aquatic and terrestrial environments encompass various pathogenic species, including the parasite and the free-living . Both microorganisms pose significant threats to public health, capable of inducing life-threatening effects on humans. These amoebae exist in two cellular forms: trophozoites and cysts.

View Article and Find Full Text PDF

The prevailing concept is that gestational alloimmune liver disease (GALD) is caused by maternal antibodies targeting a currently unknown antigen on the liver of the fetus. This leads to deposition of complement on the fetal hepatocytes and death of the fetal hepatocytes and extensive liver injury. In many cases, the newborn dies.

View Article and Find Full Text PDF

Mass spectrometry-based phosphoproteomics is currently the leading methodology for the study of global kinase signaling. The scientific community is continuously releasing technological improvements for sensitive and fast identification of phosphopeptides, and their accurate quantification. To interpret large-scale phosphoproteomics data, numerous bioinformatic resources are available that help understanding kinase network functional role in biological systems upon perturbation.

View Article and Find Full Text PDF

Hypothesis-free high-throughput profiling allows relative quantification of thousands of proteins or transcripts across samples and thereby identification of differentially expressed genes. It is used in many biological contexts to characterize differences between cell lines and tissues, identify drug mode of action or drivers of drug resistance, among others. Changes in gene expression can also be due to confounding factors that were not accounted for in the experimental plan, such as change in cell proliferation.

View Article and Find Full Text PDF

T cells recognize a few high-affinity antigens among a vast array of lower affinity antigens. According to the kinetic proofreading model, antigen discrimination properties could be explained by the gradual amplification of small differences in binding affinities as the signal is transduced downstream of the T cell receptor. Which early molecular events are affected by ligand affinity, and how, has not been fully resolved.

View Article and Find Full Text PDF

Encystment is a common stress response of most protists, including free-living amoebae. Cyst formation protects the amoebae from eradication and can increase virulence of the bacteria they harbor. Here, we mapped the global molecular changes that occur in the facultatively pathogenic amoeba Acanthamoeba castellanii during the early steps of the poorly understood process of encystment.

View Article and Find Full Text PDF

Unlabelled: The protein tyrosine phosphatase SHP2 is crucial for oncogenic transformation of acute myeloid leukemia (AML) cells expressing mutated receptor tyrosine kinases. SHP2 is required for full RAS-ERK activation to promote cell proliferation and survival programs. Allosteric SHP2 inhibitors act by stabilizing SHP2 in its autoinhibited conformation and are currently being tested in clinical trials for tumors with overactivation of the RAS/ERK pathway, alone and in various drug combinations.

View Article and Find Full Text PDF

Global analysis of protein phosphorylation by mass spectrometry proteomic techniques has emerged in the last decades as a powerful tool in biological and biomedical research. However, there are several factors that make the global study of the phosphoproteome more challenging than measuring non-modified proteins. The low stoichiometry of the phosphorylated species and the need to retrieve residue specific information require particular attention on sample preparation, data acquisition and processing to ensure reproducibility, qualitative and quantitative robustness and ample phosphoproteome coverage in phosphoproteomic workflows.

View Article and Find Full Text PDF

The amount of public proteomics data is rapidly increasing but there is no standardized format to describe the sample metadata and their relationship with the dataset files in a way that fully supports their understanding or reanalysis. Here we propose to develop the transcriptomics data format MAGE-TAB into a standard representation for proteomics sample metadata. We implement MAGE-TAB-Proteomics in a crowdsourcing project to manually curate over 200 public datasets.

View Article and Find Full Text PDF

The European Bioinformatics Community for Mass Spectrometry (EuBIC-MS; eubic-ms.org) was founded in 2014 to unite European computational mass spectrometry researchers and proteomics bioinformaticians working in academia and industry. EuBIC-MS maintains educational resources (proteomics-academy.

View Article and Find Full Text PDF

Hydrogen-Deuterium eXchange coupled to Mass Spectrometry (HDX-MS) is now common practice in structural biology. However, it is most of the time applied to rather small oligomeric complexes. Here, we report on the use of HDX-MS to investigate conformational differences between the human standard 20S (std20S) and immuno 20S (i20s) proteasomes alone or in complex with PA28αβ or PA28γ activators.

View Article and Find Full Text PDF

T-cell receptor (TCR) ligation-mediated protein phosphorylation regulates the activation, cellular responses, and fates of T cells. Here, we used time-resolved high-resolution phosphoproteomics to identify, quantify, and characterize the phosphorylation dynamics of thousands of phosphorylation sites in primary T cells during the first 10 min after TCR stimulation. Bioinformatic analysis of the data revealed a coherent orchestration of biological processes underlying T-cell activation.

View Article and Find Full Text PDF

Trehalose polyphleates (TPP) are high-molecular-weight, surface-exposed glycolipids present in a broad range of nontuberculous mycobacteria. These compounds consist of a trehalose core bearing polyunsaturated fatty acyl substituents (called phleic acids) and a straight-chain fatty acid residue and share a common basic structure with trehalose-based glycolipids produced by TPP production starts in the cytosol with the formation of a diacyltrehalose intermediate. An acyltransferase, called PE, subsequently catalyzes the transfer of phleic acids onto diacyltrehalose to form TPP, and an MmpL transporter promotes the export of TPP or its precursor across the plasma membrane.

View Article and Find Full Text PDF

is the causative agent of tuberculosis and remains one of the most widespread and deadliest bacterial pathogens in the world. A distinguishing feature of mycobacteria that sets them apart from other bacteria is the unique architecture of their cell wall, characterized by various species-specific lipids, most notably mycolic acids (MAs). Therefore, targeted inhibition of enzymes involved in MA biosynthesis, transport, and assembly has been extensively explored in drug discovery.

View Article and Find Full Text PDF

Phosphorylation-driven cell signaling governs most biological functions and is widely studied using mass-spectrometry-based phosphoproteomics. Identifying the peptides and localizing the phosphorylation sites within them from the raw data is challenging and can be performed by several algorithms that return scores that are not directly comparable. This increases the heterogeneity among published phosphoproteomics data sets and prevents their direct integration.

View Article and Find Full Text PDF

The 2019 European Bioinformatics Community (EuBIC) Winter School was held from January 15th to January 18th 2019 in Zakopane, Poland. This year's meeting was the third of its kind and gathered international researchers in the field of (computational) proteomics to discuss (mainly) challenges in proteomics quantification and data independent acquisition (DIA). Here, we present an overview of the scientific program of the 2019 EuBIC Winter School.

View Article and Find Full Text PDF

The rise of intact protein analysis by mass spectrometry (MS) was accompanied by an increasing need for flexible tools allowing data visualization and analysis. These include inspection of the deconvoluted molecular weights of the proteoforms eluted alongside liquid chromatography (LC) through their representation in three-dimensional (3D) liquid chromatography coupled to mass spectrometry (LC-MS) maps (plots of deconvoluted molecular weights, retention times, and intensity of the MS signal). With this aim, we developed a free and open-source web application named VisioProt-MS (https://masstools.

View Article and Find Full Text PDF

Summary: With the advent of fully automated sample preparation robots for Hydrogen-Deuterium eXchange coupled to Mass Spectrometry (HDX-MS), this method has become paramount for ligand binding or epitope mapping screening, both in academic research and biopharmaceutical industries. However, bridging the gap between commercial HDX-MS software (for raw data interpretation) and molecular viewers (to map experiment results onto a 3D structure for biological interpretation) remains laborious and requires simple but sometimes limiting coding skills. We solved this bottleneck by developing HDX-Viewer, an open-source web-based application that facilitates and quickens HDX-MS data analysis.

View Article and Find Full Text PDF

Summary: VisioProt-MS is designed to summarize and analyze intact protein and top-down proteomics data. It plots the molecular weights of eluting proteins as a function of their retention time, thereby allowing inspection of runs from liquid chromatography coupled to mass spectrometry (LC-MS). It also overlays MS/MS identification results.

View Article and Find Full Text PDF