Publications by authors named "Marie Lesaicherre"

[reaction: see text] We have developed a microarray-based strategy for detection of three major classes of hydrolytic enzymes on the basis of their catalytic activities. This enables the sensitive detection of proteins not merely by their bindings but rather by their enzymatic activities. This may provide a valuable tool for screening, identification, and characterization of new enzymes in a high-throughput fashion.

View Article and Find Full Text PDF

An integrated system of a silicon-based microfabricated polymerase chain reaction (microPCR) chamber and microfabricated electrophoretic glass chips have been developed. The PCR chamber was made of silicon and had aluminum heaters and temperature sensors integrated on the glass anodically bonded cover. Temperature uniformity in the reaction chamber was +/-0.

View Article and Find Full Text PDF

Peptide-based microarrays allow for high-throughput identification of protein kinase substrates. However, current methods of detecting kinase activity require the use of radioisotopes. We have developed a novel fluorescence-based approach for quantitative detection of peptide phosphorylation on chip using fluorescently-labeled anti-phosphoserine and anti-phosphotyrosine antibodies.

View Article and Find Full Text PDF

In peptide-based microarrays, most existing methods do not allow for site-specific immobilization of peptides on the glass surface. We have developed two new approaches for site-specific immobilization of kinase substrates onto glass slides: (1) slides were functionalized with avidin for attachment of biotinylated peptides; and (2) slides were functionalized with thioester for attachment of N-terminally cysteine-containing peptides via a native chemical ligation reaction.

View Article and Find Full Text PDF