Publications by authors named "Marie Laure Island"

We have previously described a form of hepatocellular carcinoma (HCC) in non-cirrhotic liver (HCC-NC) developed by Peruvian patients. We analyzed the metallomic profile in hepatic tissues from two independent cohorts exhibiting HCC-NC. Clinical, histopathological data, and HCC and non-tumoral liver (NTL) samples of 38 Peruvian and 38 French HCC-NC patients, were studied.

View Article and Find Full Text PDF

The objective of the present study was to determine the effects of dry immersion, an innovative ground-based human model of simulated microgravity and extreme physical inactivity, on iron homeostasis and distribution. Twenty young healthy men were recruited and submitted to 5 days of dry immersion (DI). Fasting blood samples and MRI were performed before and after DI exposure to assess iron status, as well as hematological responses.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of skeletal muscle in regulating hepcidin, which controls iron metabolism during microgravity exposure.
  • Findings reveal that in rats, hepcidin levels increase during prolonged microgravity and that intermittent reloading does not alleviate iron misdistribution, despite benefiting muscle health.
  • The research suggests that even with muscle reloading, the impact on iron storage and distribution remains unchanged after extended microgravity exposure, highlighting potential challenges for long-duration space missions.
View Article and Find Full Text PDF

Hereditary aceruloplasminemia (HA), related to mutations in the ceruloplasmin () gene, leads to iron accumulation. Ceruloplasmin ferroxidase activity being considered essential for macrophage iron release, macrophage iron overload is expected, but it is not found in hepatic and splenic macrophages in humans. Our objective was to get a better understanding of the mechanisms leading to iron excess in HA.

View Article and Find Full Text PDF

Iron excess increases the hepatic expression of hepcidin, the systemic iron metabolism regulator that favors iron sequestration in the spleen. Genetic iron overload related to hepcidin insufficiency decreases the spleen iron concentration and increases hepatic iron concentration, whereas during secondary iron overload, the hepcidin expression increases together with spleen iron concentration in addition to hepatic iron concentrations increase. Links between iron metabolism and other metals being suggested, our aim was to investigate, during iron overload, the relationships between the hepatic hepcidin expression level and the hepatic and splenic concentrations of iron, manganese, copper, zinc, and molybdenum, determined using inductively coupled plasma mass spectrometry.

View Article and Find Full Text PDF

Iron is reported to interact with other metals. In addition, it has been shown that genetic background may impact iron metabolism. Our objective was to characterize, in mice of three genetic backgrounds, the links between iron and several non-iron metals.

View Article and Find Full Text PDF

Ferroportin (FPN) mediates iron export from cells and this function is modulated by serum hepcidin. Mutations in the FPN gene (SLC40A1) lead to autosomal dominant iron overload diseases related either to loss or to gain of function, and usually characterized by normal or low transferrin saturation versus elevated transferrin saturation, respectively. However, for the same mutation, the phenotypic expression may vary from one patient to another.

View Article and Find Full Text PDF

Unlabelled: Gender-related disparities in the regulation of iron metabolism may contribute to the differences exhibited by men and women in the progression of chronic liver diseases associated with reduced hepcidin expression, e.g., chronic hepatitis C, alcoholic liver disease, or hereditary hemochromatosis.

View Article and Find Full Text PDF

Background: DMT1 is a transmembrane iron transporter involved in iron duodenal absorption and cellular iron uptake. Mutations in the human SLC11A2 gene coding DMT1 lead to microcytic anemia and hepatic iron overload, with unexpectedly low levels of plasma ferritin in the presence of iron stores.

Design And Methods: We report a patient with a similar phenotype due to two mutations in the SLC11A2 gene, the known p.

View Article and Find Full Text PDF

Hepcidin, a hormone mainly synthesized by hepatocytes and secreted in plasma, controls iron bioavailability. Thus, by inducing the internalization of the iron exporter ferroportin, it regulates iron release from macrophages, enterocytes and hepatocytes towards plasma. Abnormal levels of hepcidin expression alter plasma iron parameters and lead to iron metabolism disorders.

View Article and Find Full Text PDF

Genetic iron overload has long been confined to the picture of classical hemochromatosis related to the HFE C282Y mutation (type 1 hemochromatosis). C282Y homozygosity affects approximately three people out of 1000 of the Caucasian population, representing one of the most frequent genetic predispositions. It has, however, rapidly become clear that the HFE C282Y mutation is not the sole culprit in genetic iron overload.

View Article and Find Full Text PDF

During the inflammatory process, hepcidin overexpression favours the development of anaemia of chronic diseases which represents the second most common form of anaemia worldwide. The identification of therapeutic agents decreasing hepcidin expression is therefore an important goal. The aim of this study was to target the STAT3 signalling involved in the development of increased hepcidin expression related to chronic inflammation.

View Article and Find Full Text PDF

Low levels of hepcidin are responsible for the development of iron overload in p.Cys282Tyr HFE related hemochromatosis. Every genetic factor lowering the hepcidin gene expression could contribute to a more severe phenotype in HFE hemochromatosis.

View Article and Find Full Text PDF

Huntington's disease resulting from huntingtin containing an expanded polyglutamine is associated with aggregates largely confined to neuronal inclusions, and with neuronal death. Inclusions are thought to originate from discrete N-terminal fragments of expanded huntingtin produced by specific endopeptidases. We have now purified the neuronal inclusions of Huntington's disease brain.

View Article and Find Full Text PDF

Alpha interferon (IFN-alpha) and IFN-beta are able to interfere with viral infection. They exert a vast array of biologic functions, including growth arrest, cell differentiation, and immune system regulation. This regulation extends from innate immunity to cellular and humoral adaptive immune responses.

View Article and Find Full Text PDF

Transcriptional regulation is a consequence of the combination of both activation and repression for establishing specific patterns of eukaryotic gene expression. The regulation of the expression of type I interferon (IFN-A and -B) multigene family is controlled primarily at the transcriptional level and has been widely studied as a model to understand the mechanisms of stable repression, transient expression and postinduction repression of genes. The positive and negative regulatory elements required for this on/off switch have been defined within a complex 5' upstream region of their transcription start site.

View Article and Find Full Text PDF

Different members of the interferon regulatory factor (IRF) family are early activated by viral infection of eukaryotic cells. The IRFs participate in the virus-induced transcriptional regulation of different genes, including the multigenic interferon-A (IFN-A) family, members of which are involved in the establishment of an antiviral state, cell growth inhibition or apoptosis. This study presents the recent progress in the field of virus-induced transactivation and repression of IFN-A gene promoters.

View Article and Find Full Text PDF

Interferon A (IFN-A) genes are differentially expressed after virus induction. The differential expression of individual IFN-A genes is modulated by the specific transcription activators IFN regulatory factor 3 (IRF3) and IRF-7 and the homeoprotein transcription repressor Pitx1. We now show that repression by Pitx1 does not appear to be due to the recruitment of histone deacetylases.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionj41mlr8hb6h9fsu0g97d74abfni8n7cb): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once