In this study, we tested the hypothesis that machine learning methods can accurately classify extant primates based on triquetrum shape data. We then used this classification tool to observe the affinities between extant primates and fossil hominoids. We assessed the discrimination accuracy for an unsupervised and supervised learning pipeline, i.
View Article and Find Full Text PDFThis study investigates the maximal range of motion (ROM) during wrist deviation and forearm rotation for five different primate genera and the possible correlation with the shape of the distal ulna, triquetrum and hamate. A two-block phylogenetic partial least square analysis was performed to test this covariation in a phylogenetic context, using shape coordinates and a matrix of maximal ROM data as input data. The results show that gibbons have the highest ROM for both ulnar deviation and supination, whereas Macaca exhibited the lowest ROM for supination, and Pan had the lowest ROM for ulnar deviation.
View Article and Find Full Text PDFObjectives: In this study, we investigated the shape differences of the distal ulna in a phylogenetic context among a broad range of primate taxa. Furthermore, we evaluated covariation between ulnar and triquetrum shape and a possible association between ulnar shape and locomotor behavior.
Materials And Methods: We applied 3D geometric morphometrics on a large dataset comprising the distal ulna of 124 anthropoid primate specimens belonging to 12 different genera.
In this study, we investigate the branching patterns of the vascularization and innervation of the primate forelimb by performing detailed dissections of five unembalmed nonhuman primate specimens belonging to five different species, that is, rhesus macaque (Macaca mulatta), white-handed gibbon (Hylobates lar), Western gorilla (Gorilla gorilla), chimpanzee (Pan troglodytes), and bonobo (Pan paniscus). Results are compared with five embalmed human specimens (Homo sapiens), and anatomical data of previous studies on nonhuman primates are also included to provide a broader comparative framework. The results show that the overall configuration of the forelimb blood vessels and nerves of the different primate species is similar, although some apparent interspecific differences are found.
View Article and Find Full Text PDFIn this study, we want to investigate the covariation in the shape of two carpal bones, the triquetrum and hamate, and the possible association with locomotor behavior in a broad range of primate taxa. We applied 3D Geometric Morphometrics on a large data set comprising 309 anthropoid primates of 12 different genera. Principal component analyses were performed on the covariance matrix of 18 (triquetrum) and 23 (hamate) Procrustes-aligned surface landmarks.
View Article and Find Full Text PDFNonhuman primates have a highly diverse locomotor repertoire defined by an equally diverse hand use. Based on how primates use their hands during locomotion, we can distinguish between terrestrial and arboreal taxa. The 'arboreal' hand is likely adapted towards high wrist mobility and grasping, whereas the 'terrestrial' hand will show adaptations to loading.
View Article and Find Full Text PDFPrimates live in very diverse environments and, as a consequence, show an equally diverse locomotor behaviour. During locomotion, the primate hand interacts with the superstrate and/or substrate and will therefore probably show adaptive signals linked with this locomotor behaviour. Whereas the morphology of the forearm and hand bones have been studied extensively, the functional adaptations in the hand musculature have been documented only scarcely.
View Article and Find Full Text PDFThe human hand is well known for its unique dexterity which is largely facilitated by a highly mobile, long and powerful thumb that enables both tool manufacturing and use, a key component of human evolution. The bonobo (Pan paniscus), the closest extant relative to modern humans together with the chimpanzee (Pan troglodytes), also possesses good manipulative capabilities but with a lower level of dexterity compared with modern humans. Despite the close phylogenetic relationship between bonobos and humans, detailed quantitative data of the bonobo forelimb musculature remains largely lacking.
View Article and Find Full Text PDF