Introduction: Drug incompatibilities are among the most common medication errors in intensive care units. A precipitate can form and block the catheter or cause an adverse event in the patient. Intensive care units have implemented various strategies for limiting the occurrence of these incompatibilities, which have already been studied in vitro under standardized conditions.
View Article and Find Full Text PDFBackground: Drug incompatibility is defined as a physical-chemical reaction between two or more injectable drugs and that results mainly in precipitation or insolubility. Several strategies for reducing incompatibilities have been implemented empirically in intensive care units. However, these strategies have never been compared directly (and particularly in terms of the particulate load and drug mass flow rate) under standardized conditions.
View Article and Find Full Text PDFThe cellular environment modifies cellular phenotypes, in particular, the stress response phenotype, which easily exhibits high phenotypic heterogeneity due to the common characteristics of its regulatory networks. The aim of this work is to quantify and interpret the impact of collagen type I, a major component of the cellular environment, on the phenotypic heterogeneity of the cellular response. Our approach combines in an original way the monitoring of the response of a single cell and the mathematical modeling of the network.
View Article and Find Full Text PDFCell-to-cell variability in stress response is a bottleneck for the construction of accurate and predictive models which could guide clinical diagnosis and treatment of certain diseases, for example, cancer. Indeed, such phenotypic heterogeneity can lead to fractional killing and persistence of a subpopulation of cells which are resistant to a given treatment. The heat shock response network plays a major role in protecting the proteome against several types of injuries.
View Article and Find Full Text PDFDuring aging, alterations of extracellular matrix proteins contribute to various pathological phenotypes. Among these alterations, type I collagen cross-linking and associated glycation products accumulation over time detrimentally affects its physico-chemical properties, leading to alterations of tissue biomechanical stability. Here, different-age collagen 3D matrices using non-destructive and label-free biophotonic techniques were analysed to highlight the impact of collagen I aging on 3D constructs, at macroscopic and microscopic levels.
View Article and Find Full Text PDFWe report here on a first study using synchrotron radiation-based Fourier transform infrared microspectroscopy and imaging to investigate HT1080 human fibrosarcoma cells grown onto different-aged type I collagen networks. Spectral images were analyzed with k-means and fuzzy C-means (FCM) clustering algorithms. K-means delineated tumor cells from their surrounding collagen networks and the latter as a function of age mainly due to specific changes in the sugar absorption region.
View Article and Find Full Text PDFDuring aging, collagen structure changes, detrimentally affecting tissues' biophysical and biomechanical properties due to an accumulation of advanced glycation end-products (AGEs). In this investigation, we conducted a parallel study of microscopic and macroscopic properties of different-aged collagens from newborn to 2-yr-old rats, to examine the effect of aging on fibrillogenesis, mechanical and contractile properties of reconstituted hydrogels from these collagens seeded with or without fibroblasts. In addition to fibrillogenesis of collagen under the conventional conditions, some fibrillogenesis was conducted alongside a 12-T magnetic field, and gelation rate and AGE content were measured.
View Article and Find Full Text PDFBackground: In infected incisional ventral hernias (IVHs), the use of a synthetic non-absorbable mesh is not recommended and biological meshes hold promise. However, the level of evidence for their safety and efficacy remains low.
Methods: The SIMBIOSE trial is a multicenter, phase III, randomized, controlled trial comparing the use of a biological mesh versus traditional wound care in patients with an IVH.
BMC Cancer
June 2013
Background: A dramatic increase in the incidence of the diffuse form of gastric adenocarcinomas and particularly signet ring cell carcinomas has been observed in Western countries. Evidence is accruing that signet ring cell carcinomas may have inherent chemo resistance leaving many clinicians unsure of the benefits of delaying surgery to pursue a neoadjuvant approach.
Methods/design: PRODIGE-19-FFCD1103-ADCI002 is a prospective multicentre controlled randomised phase II/III trial comparing current standard of care of perioperative chemotherapy (2x3 cycles of Epirubicin, cisplatin, 5-fluorouracil) with a strategy of primary surgery followed by adjuvant chemotherapy (6 cycles of Epirubicin, cisplatin, 5-fluorouracil) in patients with a stage IB-III gastric signet ring cell tumour.
Background: Non-enzymatic glycation is the main post-translational modification of long-life proteins observed during aging and physiopathological processes such as diabetes and atherosclerosis. Type I collagen, the major component in matrices and tissues, represents a key target of this spontaneous reaction which leads to changes in collagen biomechanical properties and by this way to tissue damages.
Methods: The current study was performed on in vitro glycated type I collagens using vibrational microspectroscopies, FT-IR and Raman, to highlight spectral features related to glycation effect.
Polarization resolved second harmonic generation (PSHG) is developed to study, at the microscopic scale, the impact of aging on the structure of type I collagen fibrils in two-dimensional coatings. A ribose-glycated collagen is also used to mimic tissue glycation usually described as an indicator of aging. PSHG images are analyzed using a generic approach of the molecular disorder information in collagen fibrils, revealing significant changes upon aging, with a direct correlation between molecular disorder and fibril diameters.
View Article and Find Full Text PDFAnticancer drug resistance is a multifactorial process that includes acquired and de novo drug resistances. Acquired resistance develops during treatment, while de novo resistance is the primary way for tumor cells to escape chemotherapy. Tumor microenvironment has been recently shown to be one of the important factors contributing to de novo resistance and called environment-mediated drug resistance (EMDR).
View Article and Find Full Text PDFCollagen type I is an abundant component of the extracellular matrix and due to its longevity, constitutes a prominent target of non-enzymatic post-translational in vivo modifications such as carbamylation and glycation. These protein modifications involved in aging, renal diseases and diabetes, are linked to elevated cancer risk. In this in vitro study, we investigated the impact of carbamylated and glycated collagen type I on the migratory behavior of the highly invasive HT1080 human fibrosarcoma cells.
View Article and Find Full Text PDFBackground: The cell microenvironment, especially extracellular matrix proteins, plays an important role in tumor cell response to chemotherapeutic drugs. The present study was designed to investigate whether this microenvironment can influence the antimigratory effect of an anthracycline drug, doxorubicin, when tumor cells are grown in a matrix of type I collagen, a three-dimensional (3D) context which simulates a natural microenvironment.
Methods: To this purpose, we studied the migratory parameters, the integrin expression, and the activation state of focal adhesion kinase (FAK) and GTPase RhoA involved in the formation of focal adhesions and cell movement.