Publications by authors named "Marie Guerraty"

Article Synopsis
  • Coronary microvascular disease (CMVD) affects small blood vessels in the heart and can cause issues like ischemia or heart attacks without blocked arteries, leading to a need for better treatment options.
  • Current research in genetics, particularly through genome-wide association studies (GWAS) on coronary artery disease (CAD), has identified numerous genetic markers that could help understand and target therapies for CMVD.
  • The article suggests that more in-depth genetic studies specifically focused on CMVD are necessary, emphasizing the importance of diverse representation in research to further uncover its underlying mechanisms and potential treatments.
View Article and Find Full Text PDF
Article Synopsis
  • Metabolic dysfunction-associated Fatty Liver Disease (MAFLD) has become a leading cardiometabolic condition, and the transcriptional co-regulator FOG2 plays a key role in regulating liver lipid metabolism.
  • A specific genetic variant of FOG2 (rs28374544) found mainly in individuals of African descent is linked to liver damage and cirrhosis, and analysis both in vitro and genomically suggests it influences the mTORC1 pathway.
  • The study indicates that FOG2 may promote MAFLD through mechanisms such as increased lipid production and accumulation, shedding light on its role in the disease's underlying molecular processes.
View Article and Find Full Text PDF

Background: The diagnosis of coronary microvascular disease (CMVD) remains challenging. Perfusion PET-derived myocardial blood flow (MBF) reserve (MBFR) can quantify CMVD but is not widely available. Thrombolysis in Myocardial Infarction (TIMI) frame count (TFC) is an angiography-based method that has been proposed as a measure of CMVD.

View Article and Find Full Text PDF
Article Synopsis
  • Non-alcoholic fatty liver disease (NAFLD) involves fat buildup in liver cells, with Perilipin 2 (PLIN2) playing a key role; a variant known as Ser251Pro was linked to this condition.
  • In a study using genetically modified mice, those expressing the Pro251 variant showed reduced liver fat and lower levels of certain enzymes compared to mice with the wild-type variant after being fed a fatty diet.
  • Although the Pro251 variant showed potential for less liver fat in human subjects, it wasn't significantly associated with NAFLD in larger human data sets, indicating its impact may be limited in clinical settings.
View Article and Find Full Text PDF

Modeling with longitudinal electronic health record (EHR) data proves challenging given the high dimensionality, redundancy, and noise captured in EHR. In order to improve precision medicine strategies and identify predictors of disease risk in advance, evaluating meaningful patient disease trajectories is essential. In this study, we develop the algorithm iseasrajectory fature extraion ( for feature extraction and trajectory generation in high-throughput temporal EHR data.

View Article and Find Full Text PDF

Objective: Visually estimated coronary artery calcium (VECAC) from chest CT or attenuation correction (AC)/CT obtained during positron emission tomography (PET)-myocardial perfusion imaging (MPI) is feasible. Our aim was to determine the prognostic value of VECAC beyond conventional risk factors and PET imaging parameters, including coronary flow reserve (CFR).

Methods: We analysed 608 patients without known coronary artery disease who underwent PET-MPI between 2012 and 2016 and had AC/CT and/or chest CT images.

View Article and Find Full Text PDF

The past few decades have seen an explosion in the development and use of methods for imaging the human microcirculation during health and disease. The confluence of innovative imaging technologies, affordable computing power, and economies of scale have ushered in a new era of "translational" imaging that permit us to peer into blood vessels of various organs in the human body. These imaging techniques include near-infrared spectroscopy (NIRS), positron emission tomography (PET), and magnetic resonance imaging (MRI) that are sensitive to microvascular-derived signals, as well as computed tomography (CT), optical imaging, and ultrasound (US) imaging that are capable of directly acquiring images at, or close to microvascular spatial resolution.

View Article and Find Full Text PDF

Background: The difference in diagnostic accuracy of coronary artery disease (CAD) between vasodilator SPECT and PET myocardial perfusion imaging (MPI) in patients with left bundle branch block (LBBB) or ventricular-paced rhythm (VPR) is unknown.

Methods: We identified patients with LBBB or VPR who underwent either vasodilator SPECT or PET MPI and subsequent coronary angiography. LBBB/VPR-related septal and anteroseptal defects were defined as perfusion defects involving those regions in the absence of obstructive CAD in the left anterior descending artery or left main coronary artery.

View Article and Find Full Text PDF

Ischemic heart disease remains a significant public health concern, accentuating the importance of basic research and therapeutic studies of small animals in which myocardial changes can be reproducibly detected and quantified. Few or no studies have investigated the performance of microSPECT in quantifying myocardial lesions. We utilized three versions of a multi-compartment phantom containing two left ventricular myocardial compartments (one uniform and one with a transmural 'cold' defect), a ventricular blood pool, and a background compartment, where each version had a different myocardial wall thickness (0.

View Article and Find Full Text PDF

Cardiac perfusion PET is increasingly used to assess ischemia and cardiovascular risk and can also provide quantitative myocardial blood flow (MBF) and flow reserve (MBFR) values. These have been shown to be prognostic biomarkers of adverse outcomes, yet MBF and MBFR quantification remains underutilized in clinical settings. We compare MBFR to traditional cardiovascular risk factors in a large and diverse clinical population (60% African-American, 35.

View Article and Find Full Text PDF

Genome-wide association studies have identified multiple novel genomic loci associated with vascular diseases. Many of these loci are common non-coding variants that affect the expression of disease-relevant genes within coronary vascular cells. To identify such genes on a genome-wide level, we performed deep transcriptomic analysis of genotyped primary human coronary artery smooth muscle cells (HCASMCs) and coronary endothelial cells (HCAECs) from the same subjects, including splicing Quantitative Trait Loci (sQTL), allele-specific expression (ASE), and colocalization analyses.

View Article and Find Full Text PDF
Article Synopsis
  • Hereditary transthyretin amyloid cardiomyopathy (hATTR-CM) due to the TTR V122I variant causes heart failure, particularly in older individuals of African ancestry, but its clinical impacts in other populations remain unclear.
  • The objective of the study was to explore the link between the TTR V122I variant and heart failure, while also examining how often carriers of the variant are diagnosed with hATTR-CM.
  • The study involved a large analysis of individuals enrolled in biobanks, revealing that 3.1% of those studied were TTR V122I carriers and that 30% had heart failure, highlighting a significant issue regarding diagnosis rates among these carriers.
View Article and Find Full Text PDF

Myocardial blood flow and myocardial blood flow reserve (MBFR) measurements are often used clinically to quantify coronary microvascular function. Developing imaging-based methods to measure MBFR for research in mice would be advantageous for evaluating new treatment methods for coronary microvascular disease (CMVD), yet this is more challenging in mice than in humans. This work investigates microSPECT's quantitative capabilities of cardiac imaging by utilizing a multi-part cardiac phantom and applying a known kinetic model to synthesize kinetic data from static data, allowing for assessment of kinetic modeling accuracy.

View Article and Find Full Text PDF

Background: Coronary artery disease (CAD) is influenced by genetic variation and traditional risk factors. Polygenic risk scores (PRS), which can be ascertained before the development of traditional risk factors, have been shown to identify individuals at elevated risk of CAD. Here, we demonstrate that a genome-wide PRS for CAD predicts all-cause mortality after accounting for not only traditional cardiovascular risk factors but also angiographic CAD itself.

View Article and Find Full Text PDF

Background: Interrogation of the electronic health record (EHR) using billing codes as a surrogate for diagnoses of interest has been widely used for clinical research. However, the accuracy of this methodology is variable, as it reflects billing codes rather than severity of disease, and depends on the disease and the accuracy of the coding practitioner. Systematic application of text mining to the EHR has had variable success for the detection of cardiovascular phenotypes.

View Article and Find Full Text PDF

Calcific aortic valve disease (CAVD) is a highly prevalent cardiovascular disorder accounting for a rising economic and social burden on aging populations. In spite of continuing study on the pathophysiology of disease, there remain no medical therapies to prevent the progression of CAVD. The discovery of biomarkers represents a potentially complementary approach in stratifying risk and timing of intervention in CAVD and has the advantage of providing insight into causal factors for the disease.

View Article and Find Full Text PDF

Although subjects with chronic kidney disease (CKD) are at markedly increased risk for cardiovascular mortality, the relation between CKD and aortic valve calcification has not been fully elucidated. Also, few data are available on the relation of aortic valve calcification and earlier stages of CKD. We sought to assess the relation of aortic valve calcium (AVC) with estimated glomerular filtration rate (eGFR), traditional and novel cardiovascular risk factors, and markers of bone metabolism in the Chronic Renal Insufficiency Cohort (CRIC) Study.

View Article and Find Full Text PDF

Aortic valve sclerosis (AVS), an early form of aortic valve disease, develops preferentially on the aortic side of valve leaflets, a predilection that is reflected in an heterogeneous side-specific gene expression profile. It has been ascertained that hypercholesterolemia is sufficient to initiate the endothelial expression of activated leukocyte adhesion molecule (ALCAM; CD166), restricted to the aortic side of the leaflet. Intercellular adhesion molecule-1 (ICAM-1) or vascular cell adhesion molecule-1 (VCAM-1)--both of which are more typically associated with early arterial inflammation--are not differentially expressed.

View Article and Find Full Text PDF