Publications by authors named "Marie Garraud"

Benefits from thrombolysis with recombinant tissue plasminogen activator (rt-PA) after ischemic stroke remain limited due to a narrow therapeutic window, low reperfusion rates, and increased risk of hemorrhagic transformations (HT). Experimental data showed that rt-PA enhances the post-ischemic activation of poly(ADP-ribose)polymerase (PARP) which in turn contributes to blood-brain barrier injury. The aim of the present study was to evaluate whether PJ34, a potent PARP inhibitor, improves poor reperfusion induced by delayed rt-PA administration, exerts vasculoprotective effects, and finally increases the therapeutic window of rt-PA.

View Article and Find Full Text PDF

Thrombolysis with recombinant tissue plasminogen activator (rt-PA) is currently the only approved pharmacological strategy for acute ischemic stroke. However, rt-PA exhibits vascular toxicity mainly due to endothelial damage. To investigate the mechanisms underlying rt-PA-induced endothelial alterations, we assessed the role of rt-PA in the generation of endothelial microparticles (EMPs), emerging biological markers and effectors of endothelial dysfunction.

View Article and Find Full Text PDF

Recombinant tissue plasminogen activator (rt-PA) is the only pharmacological treatment approved for thrombolysis in patients suffering from ischemic stroke, but its administration aggravates the risk of hemorrhagic transformations. Experimental data demonstrated that rt-PA increases the activity of poly(ADP-ribose)polymerase (PARP). The aim of the present study was to investigate whether PJ34, a potent (PARP) inhibitor, protects the blood-brain barrier components from rt-PA toxicity.

View Article and Find Full Text PDF