Lack of non-muscle -actin gene (Actb) leads to early embryonic lethality in mice, however mice with - to -actin replacement develop normally and show no detectable phenotypes at young age. Here we investigated the effect of this replacement in the retina. During aging, these mice have accelerated de-generation of retinal structure and function, including elongated microvilli and defective mitochondria of retinal pigment epithelium (RPE), abnormally bulging photoreceptor outer segments (OS) accompanied by reduced transducin concentration and light sensitivity, and accumulation of autofluorescent microglia cells in the subretinal space between RPE and OS.
View Article and Find Full Text PDFBackground: Alpha-synuclein (α-syn) exhibits pathological misfolding in many human neurodegenerative disorders. We previously showed that α-syn is arginylated in the mouse brain and that lack of arginylation leads to neurodegeneration in mice.
Methods: Here, we tested α-syn arginylation in human brain pathology using newly derived antibodies in combination with Western blotting, biochemical assays, and experiments in live neurons.
Arginylation is a post-translational modification mediated by the arginyltransferase (Ate1). We recently showed that conditional deletion of Ate1 in the nervous system leads to increased light-evoked response sensitivities of ON-bipolar cells in the retina, indicating that arginylation regulates the G-protein signaling complexes of those neurons and/or photoreceptors. However, none of the key players in the signaling pathway were previously shown to be arginylated.
View Article and Find Full Text PDFRegulator of G-protein signaling 7 (RGS7) is predominately present in the nervous system and is essential for neuronal signaling involving G-proteins. Prior studies in cultured cells showed that RGS7 is regulated via proteasomal degradation, however no protein is known to facilitate proteasomal degradation of RGS7 and it has not been shown whether this regulation affects G-protein signaling in neurons. Here we used a knockout mouse model with conditional deletion of arginyltransferase (Ate1) in the nervous system and found that in retinal ON bipolar cells, where RGS7 modulates a G-protein to signal light increments, deletion of Ate1 raised the level of RGS7.
View Article and Find Full Text PDFAlpha synuclein (α-syn) is a central player in neurodegeneration, but the mechanisms triggering its pathology are not fully understood. Here we found that α-syn is a highly efficient substrate for arginyltransferase ATE1 and is arginylated in vivo by a novel mid-chain mechanism that targets the acidic side chains of E46 and E83. Lack of arginylation leads to increased α-syn aggregation and causes the formation of larger pathological aggregates in neurons, accompanied by impairments in its ability to be cleared via normal degradation pathways.
View Article and Find Full Text PDFHeterotrimeric G-proteins couple metabotropic receptors to downstream effectors. In retinal ON bipolar cells, Go couples the metabotropic receptor mGluR6 to the TRPM1 channel and closes it in the dark, thus hyperpolarizing the cell. Light, via GTPase-activating proteins, deactivates Go , opens TRPM1 and depolarizes the cell.
View Article and Find Full Text PDFHeterotrimeric G-proteins (comprising Gα and Gβγ subunits) are critical for coupling of metabotropic receptors to their downstream effectors. In the retina, glutamate released from photoreceptors in the dark activates metabotropic glutamate receptor 6 (mGluR6) receptors in ON bipolar cells; this leads to activation of Go , closure of transient receptor potential melastatin 1 channels and hyperpolarization of these cells. Go comprises Gαo , Gβ3 and a Gγ.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
March 2014
Purpose: L-type voltage gated calcium channels in retina localize primarily at the presynaptic active zones of photoreceptors and bipolar cells where they modulate glutamate release. However, the pore forming subunit Cacna1s of certain L-type channels is also expressed postsynaptically at the tips of ON bipolar cell dendrites where it colocalizes with mGluR6, but has an unknown function. At these dendritic tips, the components of the mGluR6 signaling cascade cluster together in a macromolecular complex, and each one's localization often depends on that of the others.
View Article and Find Full Text PDFMammalian cones respond to light by closing a cGMP-gated channel via a cascade that includes a heterotrimeric G-protein, cone transducin, comprising Gαt2, Gβ3 and Gγt2 subunits. The function of Gβγ in this cascade has not been examined. Here, we investigate the role of Gβ3 by assessing cone structure and function in Gβ3-null mouse (Gnb3(-/-)).
View Article and Find Full Text PDFKir2.4, a strongly rectifying potassium channel that is localized to neurons and is especially abundant in retina, was fished with yeast two-hybrid screen using a constitutively active Gαo1. Here, we wished to determine whether and how Gαo affects this channel.
View Article and Find Full Text PDFHeterotrimeric G-proteins, comprising Gα and Gβγ subunits, couple metabotropic receptors to various downstream effectors and contribute to assembling and trafficking receptor-based signaling complexes. A G-protein β subunit, Gβ(3), plays a critical role in several physiological processes, as a polymorphism in its gene is associated with a risk factor for several disorders. Retinal ON bipolar cells express Gβ(3), and they provide an excellent system to study its role.
View Article and Find Full Text PDFIn darkness, glutamate released from photoreceptors activates the metabotropic glutamate receptor 6 (mGluR6) on retinal ON bipolar cells. This activates the G protein G(o), which then closes transient receptor potential melastatin 1 (TRPM1) channels, leading to cells' hyperpolarization. It has been generally assumed that deleting mGluR6 would render the cascade inactive and the ON bipolar cells constitutively depolarized.
View Article and Find Full Text PDFTo study mGluR6 expression, the authors investigated two transgenic mouse lines that express enhanced green fluorescent protein (GFP) under control of mGluR6 promoter. In retina, GFP was expressed exclusively in all ON bipolar cell types, either uniformly across all cells of this class (line 5) or in a mosaic (patchy) fashion (line 1). In brain, GFP was found in certain cortical areas, superior colliculus, axons of the corpus callosum, accessory olfactory bulb, and cells of the subcommissural organ.
View Article and Find Full Text PDFMelanoma-associated retinopathy (MAR) is characterized by night blindness, photopsias, and a selective reduction of the electroretinogram b-wave. In certain cases, the serum contains autoantibodies that react with ON bipolar cells, but the target of these autoantibodies has not been identified. Here we show that the primary target of autoantibodies produced in MAR patients with reduced b-wave is the TRPM1 cation channel, the newly identified transduction channel in ON bipolar cells.
View Article and Find Full Text PDFCertain bipolar cells in most species immunostain for GABA or its synthesizing enzyme glutamic acid decarboxylase. However, it is unknown whether they actually release GABA and, if so, from which cellular compartment and by what release mechanism. We investigated these questions in monkey retina where rod bipolar cells immunostain for GABA.
View Article and Find Full Text PDFPurkinje cell protein 2 (PCP2), a member of the family of guanine dissociation inhibitors and a strong interactor with the G-protein subunit G alpha(o), localizes to retinal ON bipolar cells. The retina-specific splice variant of PCP2, Ret-PCP2, accelerates the light response of rod bipolar cells by modulating the mGluR6 transduction cascade. All ON cone bipolar cells express mGluR6 and G alpha(o), but only a subset expresses Ret-PCP2.
View Article and Find Full Text PDFRetinal ON bipolar cells make up about 70% of all bipolar cells. Glutamate hyperpolarizes these cells by binding to the metabotropic glutamate receptor mGluR6, activating the G-protein G(o1), and closing an unidentified cation channel. To facilitate investigation of ON bipolar cells, we here report on the production of a transgenic mouse (Grm6-GFP) in which enhanced green fluorescent protein (EGFP), under control of mGluR6 promoter, was expressed in all and only ON bipolar cells.
View Article and Find Full Text PDFThe developmental switch of GABA's action from excitation to inhibition is likely due to a change in intracellular chloride concentration from high to low. Here we determined if the GABA switch correlates with the developmental expression patterns of KCC2, the chloride extruder K+-Cl- cotransporter, and NKCC, the chloride accumulator Na+-K+-Cl- cotransporter. Immunoblots of ferret retina showed that KCC2 upregulated in an exponential manner similar to synaptophysin (a synaptic marker).
View Article and Find Full Text PDF