J Antimicrob Chemother
August 2022
Background: Early antibiotic discontinuation according to the Fourth European Conference on Infections in Leukaemia (ECIL-4) recommendations is not systematically applied in high-risk neutropenic patients with haematological malignancies.
Methods: A retrospective multicentre observational study was conducted over 2 years to evaluate the safety of early antibiotic discontinuation for fever of unknown origin (FUO) during neutropenia after induction chemotherapy or HSCT, in comparison with a historical cohort. We used Cox proportional hazards models, censored on neutropenia resolution, to analyse factors associated with febrile recurrence.
β-Mannans are a heterogeneous group of polysaccharides with a common main chain of β-1,4-linked mannopyranoside residues. The cleavage of β-mannan chains is catalyzed by glycoside hydrolases called β-mannanases. In the CAZy database, β-mannanases are grouped by sequence similarity in families GH5, GH26, GH113 and GH134.
View Article and Find Full Text PDFOver the last two decades, the number of gene/protein sequences gleaned from sequencing projects of individual genomes and environmental DNA has grown exponentially. Only a tiny fraction of these predicted proteins has been experimentally characterized, and the function of most proteins remains hypothetical or only predicted based on sequence similarity. Despite the development of postgenomic methods, such as transcriptomics, proteomics, and metabolomics, the assignment of function to protein sequences remains one of the main challenges in modern biology.
View Article and Find Full Text PDFTo identify carbohydrate-active enzymes (CAZymes) that might be particularly relevant for wood fiber processing, we performed a comparative metagenomic analysis of digestive systems from Canadian beaver () and North American moose () following 3 years of enrichment on either microcrystalline cellulose or poplar hydrolysate. In total, 9,386 genes encoding CAZymes and carbohydrate-binding modules (CBMs) were identified, with up to half predicted to originate from , and phyla, and up to 17% from unknown phyla. Both PCA and hierarchical cluster analysis distinguished the annotated glycoside hydrolase (GH) distributions identified herein, from those previously reported for grass-feeding mammals and herbivorous foragers.
View Article and Find Full Text PDFStrategic enrichment of microcosms derived from wood foragers can facilitate the discovery of key microbes that produce enzymes for the bioconversion of plant fiber (i.e., lignocellulose) into valuable chemicals and energy.
View Article and Find Full Text PDFThe degradation of plant biomass is a major challenge towards the production of bio-based compounds and materials. As key lignocellulolytic enzyme producers, filamentous fungi represent a promising reservoir to tackle this challenge. Among them, the coprophilous ascomycete Podospora anserina has been used as a model organism to study various biological mechanisms because its genetics are well understood and controlled.
View Article and Find Full Text PDFLignocellulose, the most abundant renewable carbon source on earth, is the logical candidate to replace fossil carbon as the major biofuel raw material. Nevertheless, the technologies needed to convert lignocellulose into soluble products that can then be utilized by the chemical or fuel industries face several challenges. Enzymatic hydrolysis is of major importance, and we review the progress made in fungal enzyme technology over the past few years with major emphasis on (i) the enzymes needed for the conversion of polysaccharides (cellulose and hemicellulose) into soluble products, (ii) the potential uses of lignin degradation products, and (iii) current progress and bottlenecks for the use of the soluble lignocellulose derivatives in emerging biorefineries.
View Article and Find Full Text PDFBackground: White-rot basidiomycete fungi are potent degraders of plant biomass, with the ability to mineralize all lignocellulose components. Recent comparative genomics studies showed that these fungi use a wide diversity of enzymes for wood degradation. Deeper functional analyses are however necessary to understand the enzymatic mechanisms leading to lignocellulose breakdown.
View Article and Find Full Text PDFThe enzymatic digestion of the main components of lignocellulosic biomass, including plant cell wall mannans, constitutes a fundamental step in the renewable biofuel production, with great potential benefit in the industrial field. Despite several reports of X-ray structures of glycoside hydrolases, how polysaccharides are specifically recognized and accommodated in the enzymes binding site still remains a pivotal matter of research. Within this frame, NMR spectroscopic techniques provide key binding information, complementing and/or enhancing the structural view by X-ray crystallography.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2016
The discovery of novel fungal lignocellulolytic enzymes is essential to improve the breakdown of plant biomass for the production of second-generation biofuels or biobased materials in green biorefineries. We previously reported that Ustilago maydis grown on maize secreted a diverse set of lignocellulose-acting enzymes including hemicellulases and putative oxidoreductases. One of the most abundant proteins of the secretome was a putative glucose-methanol-choline (GMC) oxidoreductase.
View Article and Find Full Text PDFBackground: Asthma exacerbations are common during pregnancy with a prevalence as high as 51.9% among women with severe asthma.
Objective: To compare the treatment of asthma exacerbations in an acute-care setting during and outside of pregnancy.
Rice straw was pretreated with sodium hydroxide and subsequently conditioned to reduce the pH to 5-6 by either: (1) extensive water washing or (2) acidification with hydrochloric acid then water washing. Alkali pretreatment improved the enzymatic digestibility of rice straw by increasing the cellulose accessibility to cellulases. However, acidification after pretreatment reversed the gains in cellulose accessibility to cellulases and enzymatic digestibility due to precipitation of solubilized compounds.
View Article and Find Full Text PDFMicrobial mannanases are biotechnologically important enzymes since they target the hydrolysis of hemicellulosic polysaccharides of softwood biomass into simple molecules like manno-oligosaccharides and mannose. In this study, we have implemented a strategy of molecular engineering in the yeast Yarrowia lipolytica to improve the specific activity of two fungal endo-mannanases, PaMan5A and PaMan26A, which belong to the glycoside hydrolase (GH) families GH5 and GH26, respectively. Following random mutagenesis and two steps of high-throughput enzymatic screening, we identified several PaMan5A and PaMan26A mutants that displayed improved kinetic constants for the hydrolysis of galactomannan.
View Article and Find Full Text PDFThe microbial deconstruction of the plant cell wall is a key biological process that is of increasing importance with the development of a sustainable biofuel industry. The glycoside hydrolase families GH5 (PaMan5A) and GH26 (PaMan26A) endo-β-1,4-mannanases from the coprophilic ascomycete Podospora anserina contribute to the enzymatic degradation of lignocellulosic biomass. In this study, P.
View Article and Find Full Text PDFHere we report the cloning of the Pa_3_10940 gene from the coprophilic fungus Podospora anserina, which encodes a C-terminal family 1 carbohydrate binding module (CBM1) linked to a domain of unknown function. The function of the gene was investigated by expression of the full-length protein and a truncated derivative without the CBM1 domain in the yeast Pichia pastoris. Using a library of polysaccharides of different origins, we demonstrated that the full-length enzyme displays activity toward a broad range of β-glucan polysaccharides, including laminarin, curdlan, pachyman, lichenan, pustulan, and cellulosic derivatives.
View Article and Find Full Text PDFIn this study, natural fungal diversity in wood-decaying species was explored for biomass deconstruction. In 2007 and 2008, fungal isolates were collected in temperate forests mainly from metropolitan France and in tropical forests mainly from French Guiana. We recovered and identified 74 monomorph cultures using morphological and molecular identification tools.
View Article and Find Full Text PDFBackground: Filamentous fungi are potent biomass degraders due to their ability to thrive in ligno(hemi)cellulose-rich environments. During the last decade, fungal genome sequencing initiatives have yielded abundant information on the genes that are putatively involved in lignocellulose degradation. At present, additional experimental studies are essential to provide insights into the fungal secreted enzymatic pools involved in lignocellulose degradation.
View Article and Find Full Text PDFBackground: The gene encoding an atypical multi-modular glycoside hydrolase family 45 endoglucanase bearing five different family 1 carbohydrate binding modules (CBM1), designated PpCel45A, was identified in the Pichia pastoris GS115 genome.
Results: PpCel45A (full-length open reading frame), and three derived constructs comprising (i) the catalytic module with its proximal CBM1, (ii) the catalytic module only, and (iii) the five CBM1 modules without catalytic module, were successfully expressed to high yields (up to 2 grams per litre of culture) in P. pastoris X33.
The effectiveness of wheat straw fine to ultra-fine grindings at pilot scale was studied. The produced powders were characterised by their particle-size distribution (laser diffraction), crystallinity (WAXS) and enzymatic degradability (Trichoderma reesei enzymatic cocktail). A large range of wheat-straw powders was produced: from coarse (median particle size ∼800 μm) to fine particles (∼50 μm) using sieve-based grindings, then ultra-fine particles ∼20 μm by jet milling and ∼10 μm by ball milling.
View Article and Find Full Text PDFTo improve the enzymatic hydrolysis (saccharification) of lignocellulosic biomass by Trichoderma reesei, a set of genes encoding putative polysaccharide-degrading enzymes were selected from the coprophilic fungus Podospora anserina using comparative genomics. Five hemicellulase-encoding genes were successfully cloned and expressed as secreted functional proteins in the yeast Pichia pastoris. These novel fungal CAZymes belonging to different glycoside hydrolase families (PaMan5A and PaMan26A mannanases, PaXyn11A xylanase, and PaAbf51A and PaAbf62A arabinofuranosidases) were able to break down their predicted cognate substrates.
View Article and Find Full Text PDFBackground: To reduce the production cost of bioethanol obtained from fermentation of the sugars provided by degradation of lignocellulosic biomass (i.e., second generation bioethanol), it is necessary to screen for new enzymes endowed with more efficient biomass degrading properties.
View Article and Find Full Text PDFThe major inducible 70 kDa heat shock protein (hsp70) binds the measles virus (MeV) nucleocapsid with high affinity in an ATP-dependent manner, stimulating viral transcription and genome replication, and profoundly influencing virulence in mouse models of brain infection. Binding is mediated by two hydrophobic motifs (Box-2 and Box-3) located within the C-terminal domain (N(TAIL)) of the nucleocapsid protein, with N(TAIL) being an intrinsically disordered domain. The current work showed that high affinity hsp70 binding to N(TAIL) requires an hsp40 co-chaperone that interacts primarily with the hsp70 nucleotide binding domain (NBD) and displays no significant affinity for N(TAIL).
View Article and Find Full Text PDFBackground: The genome of measles virus consists of a non-segmented single-stranded RNA molecule of negative polarity, which is encapsidated by the viral nucleoprotein (N) within a helical nucleocapsid. The N protein possesses an intrinsically disordered C-terminal domain (aa 401-525, N(TAIL)) that is exposed at the surface of the viral nucleopcapsid. Thanks to its flexible nature, N(TAIL) interacts with several viral and cellular partners.
View Article and Find Full Text PDF