Publications by authors named "Marie Cottrell"

Neural Gas (NG) constitutes a very robust clustering algorithm given Euclidean data which does not suffer from the problem of local minima like simple vector quantization, or topological restrictions like the self-organizing map. Based on the cost function of NG, we introduce a batch variant of NG which shows much faster convergence and which can be interpreted as an optimization of the cost function by the Newton method. This formulation has the additional benefit that, based on the notion of the generalized median in analogy to Median SOM, a variant for non-vectorial proximity data can be introduced.

View Article and Find Full Text PDF

The Kohonen self-organization map is usually considered as a classification or clustering tool, with only a few applications in time series prediction. In this paper, a particular time series forecasting method based on Kohonen maps is described. This method has been specifically designed for the prediction of long-term trends.

View Article and Find Full Text PDF

It is well known that the SOM algorithm achieves a clustering of data which can be interpreted as an extension of Principal Component Analysis, because of its topology-preserving property. But the SOM algorithm can only process real-valued data. In previous papers, we have proposed several methods based on the SOM algorithm to analyze categorical data, which is the case in survey data.

View Article and Find Full Text PDF

Results of neural network learning are always subject to some variability, due to the sensitivity to initial conditions, to convergence to local minima, and, sometimes more dramatically, to sampling variability. This paper presents a set of tools designed to assess the reliability of the results of self-organizing maps (SOM), i.e.

View Article and Find Full Text PDF