Purpose: An accurate estimation of range uncertainties is essential to exploit the potential of proton therapy. According to Paganetti's study, a value of 2.4% (1.
View Article and Find Full Text PDFPurpose: The purpose of this phantom study is to demonstrate that thermoacoustic range verification could be performed clinically. Thermoacoustic emissions generated in an anatomical multimodality imaging phantom during delivery of a clinical plan are compared to simulated emissions to estimate range shifts compared to the treatment plan.
Methods: A single-field 12-layerproton pencil beam scanning (PBS)treatment plancreated in Pinnacle prescribing6 Gy/fractionwas delivered by a superconducting synchrocyclotron to a triple modality (CT, MRI, and US) abdominal imaging phantom.
Proton radiography imaging was proposed as a promising technique to evaluate internal anatomical changes, to enable pre-treatment patient alignment, and most importantly, to optimize the patient specific CT number to stopping-power ratio conversion. The clinical implementation rate of proton radiography systems is still limited due to their complex bulky design, together with the persistent problem of (in)elastic nuclear interactions and multiple Coulomb scattering (i.e.
View Article and Find Full Text PDFPurpose: One of the main sources of uncertainty in proton therapy is the conversion of the Hounsfield Units of the planning CT to (relative) proton stopping powers. Proton radiography provides range error maps but these can be affected by other sources of errors as well as the CT conversion (e.g.
View Article and Find Full Text PDFBiomed Phys Eng Express
September 2020
Kilovoltage intrafraction monitoring (KIM) is a method allowing to precisely infer the tumour trajectory based on cone beam computed tomography (CBCT) 2D-projections. However, its accuracy is deteriorated in the case of highly mobile tumours involving hysteresis. A first adaptation of KIM consisting of a prior amplitude based binning step has been developed in order to minimize the errors of the original model (phase-KIM).
View Article and Find Full Text PDFPurpose: Robust optimization is a computational expensive process resulting in long plan computation times. This issue is especially critical for moving targets as these cases need a large number of uncertainty scenarios to robustly optimize their treatment plans. In this study, we propose a novel worst-case robust optimization algorithm, called dynamic minimax, that accelerates the conventional minimax optimization.
View Article and Find Full Text PDFPurpose: To commission an open source Monte Carlo (MC) dose engine, "MCsquare" for a synchrotron-based proton machine, integrate it into our in-house C++-based I/O user interface and our web-based software platform, expand its functionalities, and improve calculation efficiency for intensity-modulated proton therapy (IMPT).
Methods: We commissioned MCsquare using a double Gaussian beam model based on in-air lateral profiles, integrated depth dose of 97 beam energies, and measurements of various spread-out Bragg peaks (SOBPs). Then we integrated MCsquare into our C++-based dose calculation code and web-based second check platform "DOSeCHECK.
Purpose: Due to the increasing complexity of IMRT/IMPT treatments, quality assurance (QA) is essential to verify the quality of the dose distribution actually delivered. In this context, Monte Carlo (MC) simulations are more and more often used to verify the accuracy of the treatment planning system (TPS). The most common method of dose comparison is the γ-test, which combines dose difference and distance-to-agreement (DTA) criteria.
View Article and Find Full Text PDFPurpose: To introduce a new algorithm-MicroCalc-for dose calculation by modeling microdosimetric energy depositions and the spectral fluence at each point of a particle beam. Proton beams are considered as a particular case of the general methodology. By comparing the results obtained against Monte Carlo computations, we aim to validate the microdosimetric formalism presented here and in previous works.
View Article and Find Full Text PDF