Publications by authors named "Marie Christine Ottet"

22q11.2 deletion syndrome (22q11DS) represents a homogeneous model of schizophrenia particularly suitable for the search of neural biomarkers of psychosis. Impairments in structural connectivity related to the presence of psychotic symptoms have been reported in patients with 22q11DS.

View Article and Find Full Text PDF

The cerebral cortex is highly convoluted, and principal folding patterns are determined early in life. Degree of cortical folding in adult life may index aberrations in brain development. Results from previous studies of cortical folding in schizophrenia are inconsistent.

View Article and Find Full Text PDF

The structural correlates of functional dysconnectivity in autism spectrum disorders (ASD) have been seldom explored, despite the fact that altered functional connectivity is one of the most frequent neuropathological observations in the disorder. We analyzed cerebral morphometry and structural connectivity using multi-modal imaging for 11 children/adolescents with ASD and 11 matched controls. We estimated regional cortical and white matter volumes, as well as vertex-wise measures of cortical thickness and local Gyrification Index (lGI).

View Article and Find Full Text PDF

Schizophrenia is postulated to be the prototypical dysconnection disorder, in which hallucinations are the core symptom. Due to high heterogeneity in methodology across studies and the clinical phenotype, it remains unclear whether the structural brain dysconnection is global or focal and if clinical symptoms result from this dysconnection. In the present work, we attempt to clarify this issue by studying a population considered as a homogeneous genetic sub-type of schizophrenia, namely the 22q11.

View Article and Find Full Text PDF

The 22q11.2 deletion syndrome (22q11DS) is a widely recognized genetic model allowing the study of neuroanatomical biomarkers that underlie the risk for developing schizophrenia. Recent advances in magnetic resonance image analyses enable the examination of structural connectivity integrity, scarcely used in the 22q11DS field.

View Article and Find Full Text PDF

Recent studies observed an association between the structural integrity of the hippocampal structure and the manifestations of clinically significant psychotic symptoms in participants at high risk for psychosis. The present study sought to investigate the longitudinal trajectory of the hippocampal volume and its subregions among a sample of participants affected by 22q11.2 deletion syndrome (22q11.

View Article and Find Full Text PDF

We study an adaptive statistical approach to analyze brain networks represented by brain connection matrices of interregional connectivity (connectomes). Our approach is at a middle level between a global analysis and single connections analysis by considering subnetworks of the global brain network. These subnetworks represent either the inter-connectivity between two brain anatomical regions or by the intra-connectivity within the same brain anatomical region.

View Article and Find Full Text PDF

Children with congenital heart disease (CHD) who survive surgery often present impaired neurodevelopment and qualitative brain anomalies. However, the impact of CHD on total or regional brain volumes only received little attention. We address this question in a sample of patients with 22q11.

View Article and Find Full Text PDF

Objective: The 22q11.2 deletion syndrome (22q11DS) is a neurogenetic syndrome with high risk for the development of psychiatric disorder. There is interest in identifying reliable markers for measuring and monitoring socio-emotional impairments in 22q11DS during development.

View Article and Find Full Text PDF

22q11.2 deletion syndrome (22q11DS) is associated with an increased susceptibility to develop schizophrenia. Despite a large body of literature documenting abnormal brain structure in 22q11DS, cerebral changes associated with brain maturation in 22q11DS remained largely unexplored.

View Article and Find Full Text PDF

Coping with mild early life stress tends to make subsequent coping efforts more effective and therefore more likely to be used as a means of arousal regulation and resilience. Here we show that this developmental learning-like process of stress inoculation increases ventromedial prefrontal cortical volumes in peripubertal monkeys. Larger volumes do not reflect increased cortical thickness but instead represent surface area expansion of ventromedial prefrontal cortex.

View Article and Find Full Text PDF