Aging is commonly defined as the loss of global homeostasis, which results from progressive alteration of all organs function. This model is currently challenged by recent data showing that interventions that extend lifespan do not always increase the overall fitness of the organism. These data suggest the existence of tissue-specific factors that regulate the pace of aging in a cell-autonomous manner.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a genetic disease characterized by progressive muscle degeneration due to mutations in the dystrophin gene. In spite of great advances in the design of curative treatments, most patients currently receive palliative therapies with steroid molecules such as prednisone or deflazacort thought to act through their immunosuppressive properties. These molecules only slightly slow down the progression of the disease and lead to severe side effects.
View Article and Find Full Text PDFMicroinjecting DNA into the cytoplasm of the syncytial gonad of Caenorhabditis elegans is the main technique used to establish transgenic lines that exhibit partial and variable transmission rates of extrachromosomal arrays to the next generation. In addition, transgenic animals are mosaic and express the transgene in a variable number of cells. Extrachromosomal arrays can be integrated into the C.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a neuromuscular disease caused by mutations in the dystrophin gene. The subcellular mechanisms of DMD remain poorly understood and there is currently no curative treatment available. Using a Caenorhabditis elegans model for DMD as a pharmacologic and genetic tool, we found that cyclosporine A (CsA) reduces muscle degeneration at low dose and acts, at least in part, through a mitochondrial cyclophilin D, CYN-1.
View Article and Find Full Text PDFIn vertebrates, zyxin is a LIM-domain protein belonging to a family composed of seven members. We show that the nematode Caenorhabditis elegans has a unique zyxin-like protein, ZYX-1, which is the orthologue of the vertebrate zyxin subfamily composed of zyxin, migfilin, TRIP6, and LPP. The ZYX-1 protein is expressed in the striated body-wall muscles and localizes at dense bodies/Z-discs and M-lines, as well as in the nucleus.
View Article and Find Full Text PDFIn Caenorhabditis elegans, mutations of the dystrophin homologue, dys-1, produce a peculiar behavioral phenotype (hyperactivity and a tendency to hypercontract). In a sensitized genetic background, dys-1 mutations also lead to muscle necrosis. The dyc-1 gene was previously identified in a genetic screen because its mutation leads to the same phenotype as dys-1, suggesting that the two genes are functionally linked.
View Article and Find Full Text PDFIn mammals, the lack of dystrophin leads to a degeneration of skeletal muscles. It has been known for many years that this pathology can be blocked by denervation or immobilization of muscles. It is not yet clear, however, whether this suppressing effect is due to the absence of fiber contraction per se, or to other mechanisms which may be induced by such treatments.
View Article and Find Full Text PDFPrevention of muscle fiber degeneration is a key issue in the treatment of muscular dystrophies such as Duchenne Muscular Dystrophy (DMD). It is widely postulated that existing pharmaceutical compounds might potentially be beneficial to DMD patients, but tools to identify them are lacking. Here, by using a Caenorhabditis elegans model of dystrophin-dependent muscular dystrophy, we show that the neurohormone serotonin and some of its agonists are potent suppressors of muscle degeneration.
View Article and Find Full Text PDFThe Caenorhabditis elegans SLO-1 channel belongs to the family of calcium-activated large conductance BK potassium channels. SLO-1 has been shown to be involved in neurotransmitter release and ethanol response. Here, we report that SLO-1 also has a critical role in muscles.
View Article and Find Full Text PDFDegenerins have emerged from genetic studies in Caenorhabditis elegans as candidate mechanically gated amiloride-sensitive ion channels for transducing mechanical stimuli into cellular responses. In C. elegans muscle, the existence of a genetic interaction between the unc-105 degenerin gene and let-2, a gene encoding an alpha2(IV) collagen, raised the possibility that UNC-105 may function as a mechanically gated channel in a stretch receptor complex.
View Article and Find Full Text PDFSyntrophins are a family of PDZ domain-containing adaptor proteins required for receptor localization. Syntrophins are also associated with the dystrophin complex in muscles. We report here the molecular and functional characterization of the Caenorhabditis elegans gene stn-1 (F30A10.
View Article and Find Full Text PDFCaenorhabditis elegans is a powerful model system widely used to investigate the relationships between genes and complex behaviors like locomotion. However, physiological studies at the cellular level have been restricted by the difficulty to dissect this microscopic animal. Thus, little is known about the properties of body wall muscle cells used for locomotion.
View Article and Find Full Text PDFThe properties of K(+) channels in body wall muscle cells acutely dissected from the nematode Caenorhabditis elegans were investigated at the macroscopic and unitary level using an in situ patch clamp technique. In the whole-cell configuration, depolarizations to potentials positive to -40 mV gave rise to outward currents resulting from the activation of two kinetically distinct voltage-dependent K(+) currents: a fast activating and inactivating 4-aminopyridine-sensitive component and a slowly activating and maintained tetraethylammonium-sensitive component. In cell-attached patches, voltage-dependent K(+) channels, with unitary conductances of 34 and 80 pS in the presence of 5 and 140 mM external K(+), respectively, activated at membrane potentials positive to -40 mV.
View Article and Find Full Text PDFDystrophin is the product of the gene mutated in Duchenne muscular dystrophy (DMD). Neither the function of dystrophin nor the physiopathology of the disease have been clearly established so far. In mammals, the dystrophin-glycoprotein complex (DGC) includes dystrophin, as well as transmembrane and cytoplasmic proteins.
View Article and Find Full Text PDFDuchenne muscular dystrophy is one of the most common neuromuscular diseases. It is caused by mutations in the dystrophin gene. Dystrobrevins are dystrophin-associated proteins potentially involved in signal transduction.
View Article and Find Full Text PDFReversible acetylation of histone tails plays an important role in chromatin remodelling and regulation of gene activity. While modification by histone acetyltransferase (HAT) is usually linked to transcriptional activation, we provide here evidence for HAT function in several types of epigenetic repression. Chameau (Chm), a new Drosophila member of the MYST HAT family, dominantly suppresses position effect variegation (PEV), is required for the maintenance of Hox gene silencing by Polycomb group (PcG) proteins, and can partially substitute for the MYST Sas2 HAT in yeast telomeric position effect (TPE).
View Article and Find Full Text PDFCell motility is regulated by extracellular cues and by intracellular factors that accumulate at sites of contact between cells and the extracellular matrix. One of these factors, focal adhesion kinase (FAK), regulates the cycle of focal adhesion formation and disassembly that is required for cell movement to occur. Recently, Wnt signaling has also been implicated in the control of cell movement in vertebrates, but the mechanism through which Wnt proteins influence motility is unclear.
View Article and Find Full Text PDFFused is a segmentation gene belonging to the segment-polarity class. Mutations at thefused locus are known to display pleiotropic effects, causing zygotically determined anomalies of ovaries and of some adult cuticular structures, and maternally determined embryonic segmentation defects. In order to determine the amorphic phenotype offused and to study the genetical basis of its pleiotropy, newfused alleles (18 viable and 11 lethal) were isolated.
View Article and Find Full Text PDF