Publications by authors named "Marie Chia-mi Lin"

The combination of anti-angiogenesis agents with immune-checkpoint inhibitors is a promising treatment for patients with advanced hepatocellular carcinoma (HCC); however, therapeutic resistance caused by cancer stem cells present in tumor microenvironments remains to be overcome. In this study, we report for the first time that the Kringle 1 domain of human hepatocyte growth-factor α chain (HGFK1), a previously described anti-angiogenesis peptide, repressed the sub-population of CD90+ cancer stem cells (CSCs) and promoted their differentiation and chemotherapy sensitivity mainly through downregulation of pre-Met protein expression and inhibition of Wnt/β-catenin and Notch pathways. Furthermore, we showed that the i.

View Article and Find Full Text PDF
Article Synopsis
  • Hepatocellular carcinoma (HCC) is a deadly cancer with few effective treatments, but targeting the CDK4/6 and PI3K/AKT pathways shows promise.
  • Researchers identified aminoquinol, an anti-plasmodium drug, as a new multi-kinase inhibitor that significantly reduces cell viability and induces apoptosis in cancer cells.
  • In studies, aminoquinol demonstrated strong anti-tumor effects in mice and could be used alone or in combination with other treatments, showing potential as a new therapeutic strategy for HCC.
View Article and Find Full Text PDF
Article Synopsis
  • Cyclin-dependent kinases 2/4/6 (CDK2/4/6) are important for cell cycle progression, and their deregulation is linked to hepatocellular carcinoma (HCC).
  • Researchers combined computational and experimental methods to find a triple-inhibitor for CDK2/4/6 from FDA-approved drugs to treat HCC.
  • They discovered vanoxerine dihydrochloride as an effective inhibitor, showing significant cytotoxic effects in HCC cell lines and promising anti-tumor activity in mice, suggesting it could be a new treatment option for HCC.
View Article and Find Full Text PDF

Activation of the phosphoinositide 3 kinase (PI3K)/AKT pathway is frequently implicated in resistance to anticancer therapies. PI3K inhibitors can restore sensitivity to standard breast cancer therapies, including endocrine therapy, HER2-targeted agents, and chemotherapy. Our previous research showed that econazole, a novel PI3Ka inhibitor, inhibits the PI3K/AKT pathway and induces apoptosis in lung cancer cells.

View Article and Find Full Text PDF

Esophagus cancer is the seventh cause of cancer-related deaths globally. In this study, we analyzed interleukin 6 (IL-6) gene expression in human esophagus cancer patients and showed that IL-6 mRNA levels are significantly higher in tumor tissues and negatively correlated with overall survival, suggesting that IL-6 is a potential therapeutic target for esophagus cancer. We further demonstrated that apigenin, a nature flavone product of green plants, inhibited IL-6 transcription and gene expression in human esophagus cancer Eca-109 and Kyse-30 cells.

View Article and Find Full Text PDF

: The phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway is hyperactivated in lung cancer and regulates a broad range of cellular processes, including proliferation, survival, angiogenesis, and metastasis. Thus PI3K is considered a promising target for therapy. To date, PI3K inhibitors have not been approved for lung cancer.

View Article and Find Full Text PDF

Since cyclin‑dependent kinases 4/6 (CDK4/6) play pivotal roles in cell cycle regulation and are overexpressed in human skin cancers, CDK4/6 inhibitors are potentially effective drugs for skin cancer. In the present study, we present a mixed computational and experimental study attempting to repurpose approved small‑molecule drugs as dual CDK4/6 inhibitors for skin cancer treatment. We performed structure‑based virtual screening using the docking software idock, targeting an ensemble of CDK4/6 structures.

View Article and Find Full Text PDF

The phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathway plays a pivotal role in many cellular processes, including the proliferation, survival and differentiation of lung cancer cells. Thus, PI3K is a promising therapeutic target for lung cancer treatment. In this study, we applied free and open-source protein-ligand docking software, screened 3167 FDA-approved small molecules, and identified putative PI3Kα inhibitors.

View Article and Find Full Text PDF

Hyperuricemia, a long-term purine metabolic disorder, is a well-known risk factor for gout, hypertension and diabetes. In maintaining normal whole-body purine levels, xanthine oxidase (XOD) is a key enzyme in the purine metabolic pathway, as it catalyzes the oxidation of hypoxanthine to xanthine and finally to uric acid. Here we used the protein-ligand docking software idock to virtually screen potential XOD inhibitors from 3167 approved small compounds/drugs.

View Article and Find Full Text PDF

Stroke causes death or long-term disabilities and threatens the general health of the population worldwide. Recent studies have suggested that miRNAs are dysregulated and can be used as biomarkers for diagnosis and prognosis in stroke. The intracerebral hemorrhage (ICH) accounts for 15% of all the stroke cases.

View Article and Find Full Text PDF

The clinical application of RNA interference (RNAi)-based cancer gene therapy has been hampered by the lack of efficient delivery of short interfering RNA (siRNA). In this context, the use of biodegradable charged polyester-based vectors (BCPVs) for delivering mutated K-Ras-targeting siRNA in a pancreatic xenograft model was investigated in vivo. Using mice bearing pancreatic xenografts as an animal model, results show that fluorescently labeled TRAMA (carboxytetramethylrhodamine) K-Ras siRNA continuously accumulated in the xenograft via BCPVs for at least 72 h.

View Article and Find Full Text PDF

RNA interfering (RNAi) using short interfering RNA (siRNA) is becoming a promising approach for cancer gene therapy. However, owing to the lack of safe and efficient carriers, the application of RNAi for clinical use is still very limited. In this study, we have developed cadmium sulphoselenide/Zinc sulfide quantum dots (CdSSe/ZnS QDs)-based nanocarriers for gene delivery.

View Article and Find Full Text PDF

Background: Antiangiogenic therapies are considered promising for the treatment of glioblastoma (GB). The non-collagenous C-terminal globular NC1 domain of type VIII collagen a1 chain, Vastatin, is an endogenous antiangiogenic polypeptide. Sustained enhanced expression of Vastatin was shown to inhibit tumour growth and metastasis in murine hepatocellular carcinoma models.

View Article and Find Full Text PDF

Bladder carcinoma (BC) is the ninth most common cause of cancer worldwide. Surgical resection and conventional chemotherapy and radiotherapy will ultimately fail due to tumor recurrence and resistance. Thus, the development of novel treatment is urgently needed.

View Article and Find Full Text PDF

Previously, we reported that MYC oncoprotein down-regulates the transcription of human MC-let-7a-1~let-7d microRNA cluster in hepatocarcinoma (HCC). Surprisingly, in silico analysis indicated that let-7 miRNA expression levels are not reduced in glioblastoma (GBM). Here we investigated the molecular basis of this differential expression.

View Article and Find Full Text PDF

Magnetic field exposure is an accepted safe and effective modality for nerve injury. However, it is clinically used only as a supplement or salvage therapy at the later stage of treatment. Here, we used a planarian Girardia sinensis decapitated model to investigate beneficial effects of early rotary non-uniform magnetic fields (RMFs) exposure on central nervous regeneration.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a hypervascular cancer without effective treatment. Here we report that polypeptide of NC1 domain of type VIII collagen (Vastatin) is an endogenous polypeptide expressed in normal liver tissue but lost in the liver of most HCC patients (73.1%).

View Article and Find Full Text PDF

Background: The toxicity of CdSe/ZnS quantum dots (QDs) in the environment and biological systems has become a major concern for the nanoparticle community. However, the potential toxicity of QDs on immune cells and its corresponding immune functions remains poorly understood. In this study, we investigated the immunotoxicity of CdSe/ZnS QDs using the in vitro in macrophages and lymphocytes and in vivo in BALB/c mice.

View Article and Find Full Text PDF

Cyclin-dependent kinase 2 (CDK2) has been reported to be overexpressed in human colorectal cancer; it is responsible for the G1‑to‑S‑phase transition in the cell cycle and its deregulation is a hallmark of cancer. The present study was the first to use idock, a free and open‑source protein‑ligand docking software developed by our group, to identify potential CDK2 inhibitors from 4,311 US Food and Drug Administration‑approved small molecular drugs with a re‑purposing strategy. Among the top compounds identified by idock score, nine were selected for further study.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Surgical resection and conventional chemotherapy and radiotherapy ultimately fail due to tumor recurrence and HCC's resistance. The development of novel therapies against HCC is thus urgently required.

View Article and Find Full Text PDF

Background: The immune non-recognition is often the underlying cause of failure in tumor immunotherapeutic. This is because most tumor-related antigens are poorly immunogenic, and fail to arouse an efficient immune response against cancers. Here we synthesized a novel TLR7 agonist, and developed a safe and effective immunotherapeutic vaccine by conjugating this TLR7 agonist with the pluripotency antigen OCT4.

View Article and Find Full Text PDF

5‑Fluorouracil (5‑FU) is a commonly used anti‑tumor chemotherapeutic drug for cervical carcinoma. However, increased drug resistance may occur following several cycles of 5‑FU‑based chemotherapy. Novel strategies of gene therapy for enhancing the sensitivity of cancer cells to 5‑FU chemotherapy have been intensively explored.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are members of non-coding RNAs. They are involved in diverse biological functions. MiRNAs are precisely regulated in a tissue- and developmental-specific manner, but dysregulated in many human diseases, in particular cancers.

View Article and Find Full Text PDF