Publications by authors named "Marie C Erfe"

Various diseases have been linked to the human microbiota, but the underlying molecular mechanisms of the microbiota in disease pathogenesis are often poorly understood. Using acne as a disease model, we aimed to understand the molecular response of the skin microbiota to host metabolite signaling in disease pathogenesis. Metatranscriptomic analysis revealed that the transcriptional profiles of the skin microbiota separated acne patients from healthy individuals.

View Article and Find Full Text PDF

The viral population, including bacteriophages, is an important component of the human microbiota, yet is poorly understood. We aim to determine whether bacteriophages modulate the composition of the bacterial populations, thus potentially playing a role in health or disease. We investigated the diversity and host interactions of the bacteriophages of Propionibacterium acnes, a major human skin commensal implicated in acne pathogenesis.

View Article and Find Full Text PDF

New prevention and treatment strategies are needed for visceral leishmaniasis, particularly ones that can be deployed simply and inexpensively in areas where leishmaniasis is endemic. Synthetic molecules that activate Toll-like receptor 7 and 8 (TLR7/8) pathways have previously been demonstrated to enhance protection against cutaneous leishmaniasis. We initially sought to determine whether the TLR7/8-activating molecule resiquimod might serve as an effective vaccine adjuvant targeting visceral leishmaniasis caused by infection with Leishmania infantum chagasi.

View Article and Find Full Text PDF

The human skin microbiome has important roles in skin health and disease. However, bacterial population structure and diversity at the strain level is poorly understood. We compared the skin microbiome at the strain level and genome level of Propionibacterium acnes, a dominant skin commensal, between 49 acne patients and 52 healthy individuals by sampling the pilosebaceous units on their noses.

View Article and Find Full Text PDF

Host defense peptides are naturally occurring molecules that play essential roles in innate immunity to infection. Based on prior structure-function knowledge, we tested two synthetic peptides (RP-1 and AA-RP-1) modeled on the conserved, microbicidal α-helical domain of mammalian CXCL4 platelet kinocidins. These peptides were evaluated for efficacy against Leishmania species, the causative agents of the group of diseases known as leishmaniasis.

View Article and Find Full Text PDF