Publications by authors named "Marie Arsenian-Henriksson"

Synovial sarcoma (SS) is driven by a unique t(18;X) chromosomal translocation resulting in expression of the SS18-SSX fusion oncoprotein, a transcriptional regulator with both activating and repressing functions. However, the manner in which SS18-SSX contributes to the development of SS is not entirely known. Here, we show that SS18-SSX drives the expression of Preferentially Expressed Antigen in Melanoma (PRAME), which is highly expressed in SS but whose function remains poorly understood.

View Article and Find Full Text PDF

Homorepeats are motifs with reiterations of the same amino acid. They are prevalent in proteins associated with diverse physiological functions but also linked to several pathologies. Structural characterization of homorepeats has remained largely elusive, primarily because they generally occur in the disordered regions or proteins.

View Article and Find Full Text PDF

Neuroblastoma (NB), a heterogenous pediatric tumor of the sympathetic nervous system, is the most common and deadly extracranial solid malignancy diagnosed in infants. Numerous efforts have been invested in understanding its origin and in development of novel curative targeted therapies. Here, we summarize the recent advances in the identification of the cell of origin and the genetic alterations occurring during development that contribute to NB.

View Article and Find Full Text PDF

Neuroblastoma is a childhood developmental cancer; however, its embryonic origins remain poorly understood. Moreover, in-depth studies of early tumor-driving events are limited because of the lack of appropriate models. Herein, we analyzed RNA sequencing data obtained from human neuroblastoma samples and found that loss of expression of trunk neural crest-enriched gene associates with advanced disease and worse outcome.

View Article and Find Full Text PDF

The c-MYC oncogene is activated in over 70% of all human cancers. The intrinsic disorder of the c-MYC transcription factor facilitates molecular interactions that regulate numerous biological pathways, but severely limits efforts to target its function for cancer therapy. Here, we use a reductionist strategy to characterize the dynamic and structural heterogeneity of the c-MYC protein.

View Article and Find Full Text PDF

Unlabelled: Therapeutic resistance and recurrence remain core challenges in cancer therapy. How therapy resistance arises is currently not fully understood with tumors surviving via multiple alternative routes. Here, we demonstrate that a subset of cancer cells survives therapeutic stress by entering a transient state characterized by whole-genome doubling.

View Article and Find Full Text PDF

Metabolic reprogramming is critical during clear cell renal cell carcinoma (ccRCC) tumorigenesis, manifested by accumulation of lipid droplets (LDs), organelles that have emerged as new hallmarks of cancer. Yet, regulation of their biogenesis is still poorly understood. Here, we demonstrate that MYC inhibition in ccRCC cells lacking the () gene leads to increased triglyceride content potentiating LD formation in a glutamine-dependent manner.

View Article and Find Full Text PDF

Pancreatic carcinoma lacks effective therapeutic strategies resulting in poor prognosis. Transcriptional dysregulation due to alterations in KRAS and MYC affects initiation, development, and survival of this tumor type. Using patient-derived xenografts of KRAS- and MYC-driven pancreatic carcinoma, we show that coinhibition of topoisomerase 1 (TOP1) and bromodomain-containing protein 4 (BRD4) synergistically induces tumor regression by targeting promoter pause release.

View Article and Find Full Text PDF

Deregulation of the MYC family of transcription factors c-MYC (encoded by ), MYCN, and MYCL is prevalent in most human cancers, with an impact on tumor initiation and progression, as well as response to therapy. In neuroblastoma (NB), amplification of the oncogene and over-expression of characterize approximately 40% and 10% of all high-risk NB cases, respectively. However, the mechanism and stage of neural crest development in which MYCN and c-MYC contribute to the onset and/or progression of NB are not yet fully understood.

View Article and Find Full Text PDF

To investigate the distribution and toxicity of ruthenium nanoparticles (Ru NPs) injected intravenously in mice. We synthesized Ru NPs, followed their biodistribution by x-ray fluorescence (XRF) imaging and evaluated organ toxicity by histopathology and gene expression. Ru NPs accumulated, mainly in liver and spleen, where they were phagocyted by tissue macrophages, giving a transient inflammation and oxidative stress response that declined after 2 weeks.

View Article and Find Full Text PDF

Engineering liquid-liquid phase separation (LLPS) of proteins and peptides holds great promise for the development of therapeutic carriers with intracellular delivery capability but requires accurate determination of their assembly properties , usually with fluorescently labeled cargo. Here, we use mass spectrometry (MS) to investigate redox-sensitive coacervate microdroplets (the dense phase formed during LLPS) assembled from a short His- and Tyr-rich peptide. We can monitor the enrichment of a reduced peptide in dilute phase as the microdroplets dissolve triggered by their redox-sensitive side chain, thus providing a quantitative readout for disassembly.

View Article and Find Full Text PDF

How the self-assembly of partially disordered proteins generates functional compartments in the cytoplasm and particularly in the nucleus is poorly understood. Nucleophosmin 1 (NPM1) is an abundant nucleolar protein that forms large oligomers and undergoes liquid-liquid phase separation by binding RNA or ribosomal proteins. It provides the scaffold for ribosome assembly but also prevents protein aggregation as part of the cellular stress response.

View Article and Find Full Text PDF

Medulloblastoma (MB) is the most common malignant brain tumour in children. High-risk MB patients harbouring MYC amplification or overexpression exhibit a very poor prognosis. Aberrant activation of MYC markedly reprograms cell metabolism to sustain tumorigenesis, yet how metabolism is dysregulated in MYC-driven MB is not well understood.

View Article and Find Full Text PDF

Multimodal contrast agents in biomedical imaging enable the collection of more comprehensive diagnostic information. In the present work, we design hybrid ruthenium-decorated superparamagnetic iron oxide nanoparticles (NPs) as the contrast agents for both magnetic resonance imaging (MRI) and X-ray fluorescence computed tomography (XFCT). The NPs are synthesized a one-pot polyol hot injection route, in diethylene glycol.

View Article and Find Full Text PDF

Background: Neuroblastoma (NB), a childhood tumor derived from the sympathetic nervous system, presents with heterogeneous clinical behavior. While some tumors regress spontaneously without medical intervention, others are resistant to therapy, associated with an aggressive phenotype. MYCN-amplification, frequently occurring in high-risk NB, is correlated with an undifferentiated phenotype and poor prognosis.

View Article and Find Full Text PDF

During decades, the research field of cancer metabolism was based on the Warburg effect, described almost one century ago. Lately, the key role of mitochondria in cancer development has been demonstrated. Many mitochondrial pathways including oxidative phosphorylation, fatty acid, glutamine, and one carbon metabolism are altered in tumors, due to mutations in oncogenes and tumor suppressor genes, as well as in metabolic enzymes.

View Article and Find Full Text PDF

Mitochondria are the main consumers of oxygen within the cell. How mitochondria sense oxygen levels remains unknown. Here we show an oxygen-sensitive regulation of TFAM, an activator of mitochondrial transcription and replication, whose alteration is linked to tumours arising in the von Hippel-Lindau syndrome.

View Article and Find Full Text PDF

Disordered proteins pose a major challenge to structural biology. A prominent example is the tumor suppressor p53, whose low expression levels and poor conformational stability hamper the development of cancer therapeutics. All these characteristics make it a prime example of "life on the edge of solubility.

View Article and Find Full Text PDF

Immunotherapy has revolutionized cancer treatment, but many cancers are not impacted by currently available immunotherapeutic strategies. Here, we investigated inflammatory signaling pathways in neuroblastoma, a classically "cold" pediatric cancer. By testing the functional response of a panel of 20 diverse neuroblastoma cell lines to three different inflammatory stimuli, we found that all cell lines have intact interferon signaling, and all but one lack functional cytosolic DNA sensing via cGAS-STING.

View Article and Find Full Text PDF

MNT is a crucial modulator of MYC, controls several cellular functions, and is activated in most human cancers. It is the largest, most divergent, and most ubiquitously expressed protein of the MXD family. MNT was first described as a MYC antagonist and tumor suppressor.

View Article and Find Full Text PDF
Article Synopsis
  • Dihydroorotate dehydrogenase (DHODH) is a key enzyme in the production of pyrimidine ribonucleotides and is targeted by inhibitors to treat autoimmune diseases and potentially for cancer and viral infections.
  • DHODH is located in the inner mitochondrial membrane and plays a crucial role in linking nucleotide metabolism with mitochondrial function, impacting energy production.
  • Inhibition of DHODH reduces mitochondrial respiration, promotes glycolysis, enhances glucose transport, activates tumor suppressor p53, and increases GDF15 levels, which may improve metabolic balance and reduce appetite in mice.
View Article and Find Full Text PDF

Background: Mitochondrial dysfunction is a common feature of aging, neurodegeneration, and metabolic diseases. Hence, mitotherapeutics may be valuable disease modifiers for a large number of conditions. In this study, we have set up a large-scale screening platform for mitochondrial-based modulators with promising therapeutic potential.

View Article and Find Full Text PDF

Many metabolic pathways, including lipid metabolism, are rewired in tumors to support energy and biomass production and to allow adaptation to stressful environments. Neuroblastoma is the second deadliest solid tumor in children. Genetic aberrations, as the amplification of the -oncogene, correlate strongly with disease progression.

View Article and Find Full Text PDF