Depression, a devastating psychiatric disorder, is a leading cause of disability worldwide. Current antidepressants address specific symptoms of the disease, but there is vast room for improvement . In this respect, new compounds that act beyond classical antidepressants to target signal transduction pathways governing synaptic plasticity and cellular resilience are highly warranted.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
July 2012
There is a prominent role of the cannabinoid system to control basal ganglia function, in respect to reward, psychomotor function and motor control. Cannabinoid dysregulations might have a pathogenetic role in dopamine- and basal ganglia related neuropsychiatric disorders, such as drug addiction, psychosis, Parkinson's disease and Huntington's disease. This review highlights interactions between cannabinoids, and dopamine, to modulate neurotransmitter release and synaptic plasticity in the context of drug addiction, psychosis and cognition.
View Article and Find Full Text PDFWe investigated the participation of the metabotropic glutamate receptor type 5 (mGluR5) in mediating increases in cortical acetylcholine (ACh) efflux elicited by established or putative neuropsychotherapeutic compounds, using in vivo microdialysis in rats. The norepinephrine transporter inhibitor atomoxetine, the cannabinoid CB1 receptor antagonist SR141716A, the dopamine D1 receptor agonist dihydrexidine, and the atypical antipsychotic clozapine increased cortical ACh (by about 2-3 fold), whereas the mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) by itself had no effect. The stimulatory effects of atomoxetine, SR141716A and dihydrexidine on cortical ACh were abolished by pretreatment with MPEP.
View Article and Find Full Text PDFBackground: Calcineurin is a neuron-enriched phosphatase that regulates synaptic plasticity and neuronal adaptation. Activation of calcineurin, overall, antagonizes the effects of the cyclic AMP activated protein/kinase A. Thus, kinase/phosphatase dynamic balance seems to be critical for transition to long-term cellular responses in neurons, and disruption of this equilibrium should induce behavioral impairments in animal models.
View Article and Find Full Text PDFRecently the two vesicular-glutamate-transporters VGLUT1 and VGLUT2 have been cloned and characterized. VGLUT1 and VGLUT2 together label all glutamatergic neurons, but because of their distinct expression patterns in the brain they facilitate our ability to define between a VGLUT1-positive cortical and a VGLUT2-positive subcortical glutamatergic systems. We have previously demonstrated an increased cortical VGLUT1 expression as marker of antidepressant activity.
View Article and Find Full Text PDF