Publications by authors named "Marie Ange Teste"

-based products are key in the biopesticides market. strains Lip and BLB1 were isolated from Lebanese and Tunisian soils, respectively. These strains are highly toxic against lepidopteran larvae, .

View Article and Find Full Text PDF

We investigated the scalability of a previously developed growth switch based on external control of RNA polymerase expression. Our results indicate that, in liter-scale bioreactors operating in fed-batch mode, growth-arrested cells are able to convert glucose to glycerol at an increased yield. A multiomics quantification of the physiology of the cells shows that, apart from acetate production, few metabolic side effects occur.

View Article and Find Full Text PDF

Fungal adhesins (Als) or flocculins are family of cell surface proteins that mediate adhesion to diverse biotic and abiotic surfaces. A striking characteristic of Als proteins originally identified in the pathogenic is to form functional amyloids that mediate interaction leading to the formation of adhesin nanodomains and -interaction between amyloid sequences of opposing cells. In this report, we show that flocculins encoded by in behave like adhesins in .

View Article and Find Full Text PDF
Article Synopsis
  • The infection process begins when macrophages engulf infective promastigotes, but the parasite has evolved ways to manipulate these immune cells.
  • During the study, the team examined how different stages of the parasite produce lipid metabolites and their role in modifying macrophage behavior.
  • Results showed that infective stages increased specific fatty acid metabolites, directing macrophages toward a M2 proresolving phenotype, which suppresses the inflammatory M1 response.
View Article and Find Full Text PDF

Recently developed transgenic techniques to explore and exploit the metabolic potential of microalgae present several drawbacks associated with the delivery of exogenous DNA into the cells and its subsequent integration at random sites within the genome. Here, we report a highly efficient multiplex genome-editing method in the diatom Phaeodactylum tricornutum, relying on the biolistic delivery of CRISPR-Cas9 ribonucleoproteins coupled with the identification of two endogenous counter-selectable markers, PtUMPS and PtAPT. First, we demonstrate the functionality of RNP delivery by positively selecting the disruption of each of these genes.

View Article and Find Full Text PDF

Unlabelled: A wealth of biochemical and molecular data have been reported regarding ethanol toxicity in the yeast Saccharomyces cerevisiae However, direct physical data on the effects of ethanol stress on yeast cells are almost nonexistent. This lack of information can now be addressed by using atomic force microscopy (AFM) technology. In this report, we show that the stiffness of glucose-grown yeast cells challenged with 9% (vol/vol) ethanol for 5 h was dramatically reduced, as shown by a 5-fold drop of Young's modulus.

View Article and Find Full Text PDF

Trehalose is a stable disaccharide commonly found in nature, from bacteria to fungi and plants. For the model yeast Saccharomyces cerevisiae, claims that trehalose is a stress protectant were based indirectly either on correlation between accumulation of trehalose and high resistance to various stresses or on stress hypersensitivity of mutants deleted for TPS1, which encodes the first enzyme in trehalose biosynthetic pathway. Our goal was to investigate more directly which one, between trehalose and/or the Tps1 protein, may serve yeast cells to withstand exposure to stress.

View Article and Find Full Text PDF

The yeast Saccharomyces cerevisiae IMA multigene family encodes four isomaltases sharing high sequence identity from 65% to 99%. Here, we explore their functional diversity, with exhaustive in-vitro characterization of their enzymological and biochemical properties. The four isoenzymes exhibited a preference for the α-(1,6) disaccharides isomaltose and palatinose, with Michaëlis-Menten kinetics and inhibition at high substrates concentration.

View Article and Find Full Text PDF

It has been known for a long time that the yeast Saccharomyces cerevisiae can assimilate alpha-methylglucopyranoside and isomaltose. We here report the identification of 5 genes (YGR287c, YIL172c, YJL216c, YJL221c and YOL157c), which, similar to the SUCx, MALx, or HXTx multigene families, are located in the subtelomeric regions of different chromosomes. They share high nucleotide sequence identities between themselves (66-100%) and with the MALx2 genes (63-74%).

View Article and Find Full Text PDF

Background: Real-time RT-PCR is the recommended method for quantitative gene expression analysis. A compulsory step is the selection of good reference genes for normalization. A few genes often referred to as HouseKeeping Genes (HSK), such as ACT1, RDN18 or PDA1 are among the most commonly used, as their expression is assumed to remain unchanged over a wide range of conditions.

View Article and Find Full Text PDF

It is well known that glycogen and trehalose accumulate in yeast under nutrient starvation or entering into the stationary phase of growth, and that high levels of trehalose are found in heat-shocked cells. However, effects of various types of stress on trehalose, and especially on glycogen, are poorly documented. Taking into account that almost all genes encoding the enzymes involved in the metabolism of these two reserve carbohydrates contain between one and several copies of the stress-responsive element (STRE), an investigation was made of the possibility of a link between the potential transcriptional induction of these genes and the accumulation of glycogen and trehalose under different stress conditions.

View Article and Find Full Text PDF