The major cardiac voltage-gated sodium channel Nav1.5 associates with proteins that regulate its biosynthesis, localization, activity and degradation. Identification of partner proteins is crucial for a better understanding of the channel regulation.
View Article and Find Full Text PDFThe voltage-sensitive Na(+) channel Na(v)1.5 plays a crucial role in generating and propagating the cardiac action potential and its dysfunction promotes cardiac arrhythmias. The channel takes part into a large molecular complex containing regulatory proteins.
View Article and Find Full Text PDFIntroduction: Loss-of-function mutations in the SCN5A gene encoding the cardiac sodium channel are responsible for Brugada syndrome (BS) and also for progressive cardiac conduction disease (inherited Lenègre disease). In an attempt to clarify the frontier between these two entities, we have characterized cardiac conduction defect and its evolution with aging in a cohort of 78 patients carrying a SCN5A mutation linked to Brugada syndrome.
Methods And Results: Families were included in the study if a SCN5A mutation was identified in a BS proband and if at least two family members were mutation carriers.
Mutations in the SCN5A gene can cause Brugada syndrome, a genetically inherited form of idiopathic ventricular fibrillation. We describe the case of a 3-year-old child with a structurally normal heart presenting with monomorphic ventricular tachycardia. Her electrocardiogram suggested a Brugada syndrome and the diagnosis was confirmed by the identification of a Brugada syndrome in her mother and in two other family members.
View Article and Find Full Text PDFA family was identified, of whom which 11 members were carriers of the G14876A ryanodine 2 receptor mutation. All but 1 were symptomatic at the time of the study. Exercise testing showed bidirectional or polymorphic arrhythmias in 4 patients, whereas in 5 patients, it showed monomorphic or rare minor polymorphic ventricular arrhythmias.
View Article and Find Full Text PDF