The mediobasal hypothalamus (MBH; arcuate nucleus of the hypothalamus [ARH] and median eminence [ME]) is a key nutrient sensing site for the production of the complex homeostatic feedback responses required for the maintenance of energy balance. Here, we show that refeeding after an overnight fast rapidly triggers proliferation and differentiation of oligodendrocyte progenitors, leading to the production of new oligodendrocytes in the ME specifically. During this nutritional paradigm, ME perineuronal nets (PNNs), emerging regulators of ARH metabolic functions, are rapidly remodeled, and this process requires myelin regulatory factor (Myrf) in oligodendrocyte progenitors.
View Article and Find Full Text PDFIn rodent models of type 2 diabetes (T2D), sustained remission of hyperglycemia can be induced by a single intracerebroventricular (icv) injection of fibroblast growth factor 1 (FGF1), and the mediobasal hypothalamus (MBH) was recently implicated as the brain area responsible for this effect. To better understand the cellular response to FGF1 in the MBH, we sequenced >79,000 single-cell transcriptomes from the hypothalamus of diabetic Lep mice obtained on Days 1 and 5 after icv injection of either FGF1 or vehicle. A wide range of transcriptional responses to FGF1 was observed across diverse hypothalamic cell types, with glial cell types responding much more robustly than neurons at both time points.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2019
Glucose-sensitive neurons have long been implicated in glucose homeostasis, but how glucose-sensing information is used by the brain in this process remains uncertain. Here, we propose a model in which (1) information relevant to the circulating glucose level is essential to the proper function of this regulatory system, (2) this input is provided by neurons located outside the blood-brain barrier (BBB) (since neurons situated behind the BBB are exposed to glucose in brain interstitial fluid, rather than that in the circulation), and (3) while the efferent limb of this system is comprised of neurons situated behind the BBB, many of these neurons are also glucose sensitive. Precedent for such an organizational scheme is found in the thermoregulatory system, which we draw upon in this framework for understanding the role played by brain glucose sensing in glucose homeostasis.
View Article and Find Full Text PDF