Nucleic acid vaccines are designed based on genetic sequences (DNA or mRNA) of a target antigen to be expressed to drive a host immune response. In response to the COVID-19 pandemic, mRNA and DNA vaccines based on the SARS-CoV-2 Spike antigen were developed. Surprisingly, head-to-head characterizations of the immune responses elicited by each vaccine type has not been performed to date.
View Article and Find Full Text PDFMonoclonal antibody therapy has played an important role against SARS-CoV-2. Strategies to deliver functional, antibody-based therapeutics with improved in vivo durability are needed to supplement current efforts and reach underserved populations. Here, we compare recombinant mAbs COV2-2196 and COV2-2130, which compromise clinical cocktail Tixagevimab/Cilgavimab, with optimized nucleic acid-launched forms.
View Article and Find Full Text PDFThe enhanced transmissibility and immune evasion associated with emerging SARS-CoV-2 variants demands the development of next-generation vaccines capable of inducing superior protection amid a shifting pandemic landscape. Since a portion of the global population harbors some level of immunity from vaccines based on the original Wuhan-Hu-1 SARS-CoV-2 sequence or natural infection, an important question going forward is whether this immunity can be boosted by next-generation vaccines that target emerging variants while simultaneously maintaining long-term protection against existing strains. Here, we evaluated the immunogenicity of INO-4800, our synthetic DNA vaccine candidate for COVID-19 currently in clinical evaluation, and INO-4802, a next-generation DNA vaccine designed to broadly target emerging SARS-CoV-2 variants, as booster vaccines in nonhuman primates.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines may target epitopes that reduce durability or increase the potential for escape from vaccine-induced immunity. Using synthetic vaccinology, we have developed rationally immune-focused SARS-CoV-2 Spike-based vaccines. Glycans can be employed to alter antibody responses to infection and vaccines.
View Article and Find Full Text PDFLymphocytes within the intestinal epithelial layer (IEL) in mammals have unique composition compared with their counterparts in the lamina propria. Little is known about the role of some of the key colonic IEL subsets, such as TCRαβCD8 T cells, in inflammation. We have recently described liver-enriched innate-like TCRαβCD8αα regulatory T cells, partly controlled by the non-classical MHC molecule, Qa-1, that upon adoptive transfer protect from T cell-induced colitis.
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, has had a dramatic global impact on public health and social and economic infrastructures. Here, we assess the immunogenicity and anamnestic protective efficacy in rhesus macaques of an intradermal (i.d.
View Article and Find Full Text PDFBackground: Liver is enriched in several innate-like unconventional T cells, but their role in alcohol-related liver disease (ALD) is not fully understood. Studies in several acute alcohol feeding models but not in chronic alcoholic steatohepatitis (ASH) model have shown that invariant natural killer T (iNKT) cells play a pathogenic role in ALD. Here, we investigated the activation of iNKT cells in an intragastric (iG) infusion model of chronic ASH as well as the frequency and cytokine phenotype of 3 different unconventional T cells: iNKT, mucosal-associated invariant T (MAIT), and CD8 CD161 Vα7.
View Article and Find Full Text PDFChronic alcohol abuse has a detrimental effect on the brain and liver. There is no effective treatment for these patients, and the mechanism underlying alcohol addiction and consequent alcohol-induced damage of the liver/brain axis remains unresolved. We compared experimental models of alcoholic liver disease (ALD) and alcohol dependence in mice and demonstrated that genetic ablation of IL-17 receptor A (IL-17ra-/-) or pharmacological blockade of IL-17 signaling effectively suppressed the increased voluntary alcohol drinking in alcohol-dependent mice and blocked alcohol-induced hepatocellular and neurological damage.
View Article and Find Full Text PDFHepatic immune system is uniquely challenged to mount a controlled effector response to pathogens while maintaining tolerance to diet and microbial Ags. We have identified a novel population of innate-like, unconventional CD8ααTCRαβ T cells in naive mice and in human peripheral blood, called CD8αα T, capable of controlling effector T cell responses. They are NK1.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
May 2019
We investigated the migration of intestinal immune cells to the liver and their contribution to alcoholic liver disease. In mice fed ethanol, we found that an increased number of invariant natural killer T (iNKT) cells, which respond to the antigen presented by CD1d, migrated from mesenteric lymph nodes to the liver. iNKT cells react to lipid antigens, so we studied their activities in mice with intestinal epithelial cell-specific deletion of () as a model for altering intestinal lipidomic profiles.
View Article and Find Full Text PDFInnate immune mechanisms play an important role in inflammatory chronic liver diseases. In this study, we investigated the role of type I or invariant NKT (iNKT) cell subsets in the progression of nonalcoholic steatohepatitis (NASH). We used α-galactosylceramide/CD1d tetramers and clonotypic mAb together with intracytoplasmic cytokine staining to analyze iNKT cells in choline-deficient l-amino acid-defined (CDAA)-induced murine NASH model and in human PBMCs, respectively.
View Article and Find Full Text PDFThe liver-gut immune axis is enriched in several innate immune cells, including innate-like unconventional and adaptive T cells that are thought to be involved in the maintenance of tolerance to gut-derived antigens and, at the same time, enable effective immunity against microbes. Two subsets of lipid-reactive CD1d-restricted natural killer T (NKT) cells, invariant NKT (iNKT) and type II NKT cells present in both mice and humans. NKT cells play an important role in regulation of inflammation in the liver and gut due to their innate-like properties of rapid secretion of a myriad of pro-inflammatory and anti-inflammatory cytokines and their ability to influence other innate cells as well as adaptive T and B cells.
View Article and Find Full Text PDFNeutrophil infiltration is a hallmark of alcoholic steatohepatitis; however, the underlying mechanisms remain unclear. We previously reported that chronic-plus-binge ethanol feeding synergistically induces hepatic recruitment of neutrophils, which contributes to liver injury. In this paper, we investigated the roles of invariant natural killer T (iNKT) cells in chronic-plus-binge ethanol feeding-induced hepatic neutrophil infiltration and liver injury.
View Article and Find Full Text PDFUnlabelled: Innate immune mechanisms leading to liver injury subsequent to chronic alcohol ingestion are poorly understood. Natural killer T (NKT) cells, enriched in the liver and comprised of at least two distinct subsets, type I and II, recognize different lipid antigens presented by CD1d molecules. We have investigated whether differential activation of NKT cell subsets orchestrates inflammatory events leading to alcoholic liver disease (ALD).
View Article and Find Full Text PDFLipids presented by the MHC class I-like molecule, CD1d, are recognized by NK T (NKT) cells, which can be broadly categorized into two subsets. The well-characterized type I NKT cells express a semi-invariant TCR and can recognize both α- and β-linked glycolipids, whereas type II NKT cells are less well studied, express a relatively diverse TCR repertoire, and recognize β-linked lipids. Recent structural studies have shown a distinct mode of recognition of a self-glycolipid sulfatide bound to CD1d by a type II NKT TCR.
View Article and Find Full Text PDFCD1d-restricted NKT cells can be divided into two groups: type I NKT cells use a semi-invariant TCR, whereas type II express a relatively diverse set of TCRs. A major subset of type II NKT cells recognizes myelin-derived sulfatides and is selectively enriched in the CNS tissue during experimental autoimmune encephalomyelitis (EAE). We have shown that activation of sulfatide-reactive type II NKT cells by sulfatide prevents induction of EAE.
View Article and Find Full Text PDFWe present two cases of endometrioid adenocarcinoma grade I, FIGO IA (staging according to the International Federation of Gynecology and Obstetrics) in young women, diagnosed within endometrial polyps. Both patients underwent repeated hysteroscopies and multiple biopsies after initial treatment to medroxyprogesterone one 400 mg daily or the insertion of IUD-LND (intrauterine device-levonorgestrel) for three months. In both of them, all histological samples were negative.
View Article and Find Full Text PDFThe innate-like natural killer T (NKT) cells are essential regulators of immunity. These cells comprise at least two distinct subsets and recognize different lipid antigens presented by the MHC class I like molecules CD1d. The CD1d-dependent recognition pathway of NKT cells is highly conserved from mouse to humans.
View Article and Find Full Text PDFGlycolipids presented by the major histocompatibility complex (MHC) class I homolog CD1d are recognized by natural killer T cells (NKT cells) characterized by either a semi-invariant T cell antigen receptor (TCR) repertoire (type I NKT cells or iNKT cells) or a relatively variable TCR repertoire (type II NKT cells). Here we describe the structure of a type II NKT cell TCR in complex with CD1d-lysosulfatide. Both TCR α-chains and TCR β-chains made contact with the CD1d molecule with a diagonal footprint, typical of MHC-TCR interactions, whereas the antigen was recognized exclusively with a single TCR chain, similar to the iNKT cell TCR.
View Article and Find Full Text PDFSulfatide-reactive type II NKT cells have been shown to regulate autoimmunity and anti-tumor immunity. Although, two major isoforms of sulfatide, C16:0 and C24:0, are enriched in the pancreas, their relative role in autoimmune diabetes is not known. Here, we report that sulfatide/CD1d-tetramer(+) cells accumulate in the draining pancreatic lymph nodes, and that treatment of NOD mice with sulfatide or C24:0 was more efficient than C16:0 in stimulating the NKT cell-mediated transfer of a delay in onset from T1D into NOD.
View Article and Find Full Text PDFAmong peripheral regulatory T cells, CD8(+) T cells also play an important role in the maintenance of immune homeostasis. A subset of CD8(+) Treg that express αβ T cell receptor (TCR) and CD8αα homodimers can recognize TCR-derived peptides in the context of the class Ib MHC molecule Qa-1. To gain a better understanding of the nature and phenotype of CD8αα(+)TCRαβ+ Treg, a global gene expression profiling using microarray, real-time quantitative polymerase chain reaction, and flow-cytometric analysis was performed using functional Treg clones and lines.
View Article and Find Full Text PDFVimentin was originally identified as an intermediate filament protein present only as an intracellular component in many cell types. However, this protein has now been detected on the surface of a number of different cancer cell types in a punctate distribution pattern. Increased vimentin expression has been indicated as an important step in epithelial-mesenchymal transition (EMT) required for the metastasis of prostate cancer.
View Article and Find Full Text PDFBackground & Aims: Hepatic ischemic reperfusion injury (IRI) is a major complication of liver transplantation and resectional hepatic surgeries. Natural killer T (NKT) cells predominate in liver, where they recognize lipid antigens bound to CD1d molecules. Type I NKT cells use a semi-invariant T-cell receptor and react with α-galactosylceramide; type II NKT cells use diverse T-cell receptors.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.