Publications by authors named "Maric T Tse"

Decision making often requires weighing costs and benefits of different options that vary in terms of reward magnitude and uncertainty. Previous studies using pharmacological inactivations have shown that the basolateral amygdala (BLA) to nucleus accumbens (NAc) pathway promotes choice towards larger/riskier rewards. Neural activity in BLA and NAc shows distinct, phasic changes in firing prior to choice and following action outcomes, yet, how these temporally-discrete patterns of activity within BLA→NAc circuitry influence choice is unclear.

View Article and Find Full Text PDF

Aging is associated with changes in executive functioning and the mesocorticolimbic dopamine system. However, the effects of aging on different forms of behavioral flexibility are not fully characterized. In young (∼5 months) and aged (∼22 months) male Fischer 344 × brown Norway rats, we assessed spatial working memory and different forms of behavioral flexibility using operant tasks: strategy set-shifting (study 1) or probabilistic reversal learning (study 2).

View Article and Find Full Text PDF

Cognitive dysfunction in schizophrenia is one of the most pervasive and debilitating aspects of the disorder. Among the numerous neural abnormalities that may contribute to schizophrenia symptoms, perturbations in markers for the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), particularly within the frontal lobes, are some of the most reliable alterations observed at postmortem examination. However, how prefrontal GABA dysfunction contributes to cognitive impairment in schizophrenia remains unclear.

View Article and Find Full Text PDF

Repeated exposure to psychostimulants such as amphetamine (AMPH) disrupts cognitive and behavioral processes mediated by the medial prefrontal cortical (mPFC) and basolateral amygdala (BLA). The present study investigated the effects of repeated AMPH exposure on the neuromodulatory actions of dopamine (DA) on BLA-mPFC circuitry and cognitive/emotional processing mediated by these circuits. Rats received five AMPH (2 mg/kg) or saline injections (controls) over 10 d, followed by 2-4 week drug washout.

View Article and Find Full Text PDF

Background: Perturbations in gamma-aminobutyric acid (GABA)-related markers have been reported in the prefrontal cortex of schizophrenic patients. However, a preclinical assessment of how suppression of prefrontal cortex GABA activity may reflect behavioral and cognitive pathologies observed in schizophrenia is forthcoming.

Methods: We assessed the effects of pharmacologic blockade of prefrontal cortex GABA(A) receptors in rats on executive functions and other behaviors related to schizophrenia, as well as neural activity of midbrain dopamine neurons.

View Article and Find Full Text PDF

The medial prefrontal cortex (mPFC) of the rat plays an essential role in behavioral flexibility, as lesions or inactivations of this region impair shifting between strategies or attentional sets using a variety of different behavioral tests. In the present study, we assessed the effects of inactivation of the mPFC on strategy set-shifting and reversal learning, using a novel, automated procedure conducted in an operant chamber. In Experiment 1, inactivation of the mPFC with bupivacaine did not impair the initial learning of a visual-cue (i.

View Article and Find Full Text PDF

Cost/benefit decisions regarding the relative effort or delay costs associated with a particular response are mediated by distributed dopaminergic and glutamatergic neural circuits. The present study assessed the contribution of dopamine and NMDA glutamate receptors in these different forms of decision making using novel effort- and delay-discounting procedures. In the effort-discounting task, rats could either emit a single response on a low-reward lever to receive two pellets, or make 2, 5, 10, or 20 responses on a high-reward (HR) lever to obtain four pellets.

View Article and Find Full Text PDF

Projections from the basolateral amygdala (BLA) and dopamine (DA) input from the ventral tegmental area (VTA) converge in the medial prefrontal cortex (mPFC), forming a neural circuit implicated in certain cognitive and emotional processes. However, the role that DA plays in modulating activity in the BLA-mPFC pathway is unknown. The present study investigated the mechanisms by which DA modulates BLA-evoked changes in mPFC neural activity, using extracellular single-unit recordings in urethane-anesthetized rats.

View Article and Find Full Text PDF

Dopamine (DA) input to the prefrontal cortex (PFC), acting on D1 receptors, plays an essential role in mediating working memory functions. In comparison, less is known about the importance of distinct PFC DA receptor subtypes in mediating executive functions such as set-shifting. The present study assessed the effects of microinfusion of D2 and D4 receptor antagonists, and D1, D2, and D4 receptor agonists into the PFC on performance of a maze-based set-shifting task.

View Article and Find Full Text PDF

This study examined the effects of long-term cannabinoid administration on the responsivity of 5-HT1A and 5-HT2A receptors, which have been implicated in depression. Animals received 12 d administration of the potent cannabinoid receptor agonist HU-210 (100 microg/kg), following which they were monitored on their behavioural, physiological and hormonal responses to a single challenge of a 5-HT1A and 5-HT2A receptor agonist, 8-OH-DPAT (0.3 mg/kg) and DOI (1 mg/kg) respectively.

View Article and Find Full Text PDF