γ-herpesviruses (γHVs) encode BCL2 homologues (vBCL2) that bind the Bcl-2 homology 3 domains (BH3Ds) of diverse proteins, inhibiting apoptosis and promoting host cell and virus survival. vBCLs encoded by Kaposi sarcoma-associated HV (KSHV) and γHV68 downregulate autophagy, a degradative cellular process crucial for homeostasis and innate immune responses to pathogens, by binding to a BH3D in BECN1, a key autophagy protein. Epstein-Barr virus (EBV) encodes a vBCL2 called BHRF1.
View Article and Find Full Text PDFBackground: Studies of the molecular mechanisms of nerve regeneration have led to the discovery of several proteins that are induced during successful nerve regeneration. RICH proteins were identified as proteins induced during the regeneration of the optic nerve of teleost fish. These proteins are 2',3'-cyclic nucleotide, 3'-phosphodiesterases that can bind to cellular membranes through a carboxy-terminal membrane localization domain.
View Article and Find Full Text PDFSodium dodecyl sulfate-polyacrylamide gel electrophoresis is a routine technique used in biochemistry. Air-drying is an economical method of gel preservation that does not require expensive equipment. Our laboratory uses drying frames from RPI, which recommends a drying solution of 20% ethanol and 10% glycerol.
View Article and Find Full Text PDFWhile conducting recombinant DNA technology procedures, such as DNA purification, agarose gel electrophoresis is often used for identification, characterization and quantification of DNA. The collection of data for experiments involving such techniques frequently involves capturing images using systems that are expensive and/or proprietary, such that they are not user-serviceable when they malfunction or become antiquated. In response to these limitations, work was done to replace the authors' existing aging Mac OS-based modular system with open-source software and generic hardware.
View Article and Find Full Text PDFMammals do not regenerate axons in their central nervous system (CNS) spontaneously. This phenomenon is the cause of numerous medical conditions after damage to nerve fibers in the CNS of humans. The study of the mechanisms of nerve regeneration in other vertebrate animals able to spontaneously regenerate axons in their CNS is essential for understanding nerve regeneration from a scientific point of view, and for developing therapeutic approaches to enhance nerve regeneration in the CNS of humans.
View Article and Find Full Text PDFBcl-2 is an anti-apoptotic protein that inhibits apoptosis elicited by multiple stimuli in a large variety of cell types. BMRP (also known as MRPL41) was identified as a Bcl-2 binding protein and shown to promote apoptosis. Previous studies indicated that the amino-terminal two-thirds of BMRP contain the domain(s) required for its interaction with Bcl-2, and that this region of the protein is responsible for the majority of the apoptosis-inducing activity of BMRP.
View Article and Find Full Text PDFBcl-2 is an anti-apoptotic member of the Bcl-2 family of proteins that protects cells from apoptosis induced by a large variety of stimuli. The protein BMRP (MRPL41) was identified as a Bcl-2 binding partner and shown to have pro-apoptotic activity. We have performed deletion mutational analyses to identify the domain(s) of Bcl-2 and BMRP that are involved in the Bcl-2/BMRP interaction, and the region(s) of BMRP that mediate its pro-apoptotic activity.
View Article and Find Full Text PDFTeleost fish show a remarkable capability of nerve regeneration in their CNS, while injuries to axon fibers in the CNS of mammals result in degeneration and loss of function. Understanding this difference has biomedical consequences to humans. Both extrinsic factors from the neuronal environment and intrinsic neuronal factors seem to play a role in successful nerve regeneration.
View Article and Find Full Text PDFMembers of the Bcl-2 family of proteins play important roles in the regulation of cell death by apoptosis. The yeast Two-Hybrid system was utilized to identify a protein that interacts with the anti-apoptotic protein Bcl-2, designated BMRP. This protein corresponds to a previously known mitochondrial ribosomal protein (MRPL41).
View Article and Find Full Text PDFBackground: Several cell lines and primary cultures benefit from the use of positively charged extracellular matrix proteins or polymers that enhance their ability to attach to culture plates. Polyethyleneimine is a positively charged polymer that has gained recent attention as a transfection reagent. A less known use of this cationic polymer as an attachment factor was explored with several cell lines.
View Article and Find Full Text PDF