Cairpol and Aeroqual air quality sensors measuring CO, CO, NO, and other species were tested in fresh biomass burning plumes in field and laboratory environments. We evaluated sensors by comparing 1-minute sensor measurements to collocated reference instrument measurements. Sensors were evaluated based on the coefficient of determination ( ) between the sensor and reference measurements, by the accuracy, collocated precision, root mean square error (RMSE), and other metrics.
View Article and Find Full Text PDFParticulate matter (PM) is a major primary pollutant emitted during wildland fires that has the potential to pose significant health risks to individuals/communities who live and work in areas impacted by smoke events. Limiting exposure is the principle measure available to mitigate health impacts of smoke and therefore the accurate determination of ambient PM concentrations during wildland fire events is critical to protecting public health. However, monitoring air pollutants in smoke impacted environments has proven challenging in that measurement interferences or sampling conditions can result in both positive and negative artifacts.
View Article and Find Full Text PDFWildland fire activity and associated emission of particulate matter air pollution is increasing in the United States over the last two decades due primarily to a combination of increased temperature, drought, and historically high forest fuel loading. The regulatory monitoring networks in the Unites States are mostly concentrated in larger population centers where anthropogenic air pollution sources are concentrated. Smaller population centers in areas more likely to be impacted by wildland fire smoke in many instances lack adequate observational air quality data.
View Article and Find Full Text PDFIn recent years wildland fires in the United States have had significant impacts on local and regional air quality and negative human health outcomes. Although the primary health concerns from wildland fires come from fine particulate matter (PM), large increases in ozone (O) have been observed downwind of wildland fire plumes (DeBell et al., 2004; Bytnerowicz et al.
View Article and Find Full Text PDFWildland fires can emit substantial amounts of air pollution that may pose a risk to those in proximity (e.g., first responders, nearby residents) as well as downwind populations.
View Article and Find Full Text PDFParticulate matter mass (PM), trace gaseous pollutants, and select volatile organic compounds (VOCs) with meteorological variables were measured in Logan, Utah (Cache Valley), for >4 weeks during winter 2017 as part of the Utah Winter Fine Particle Study (UWFPS). Higher PM levels for short time periods and lower ozone (O) levels were present due to meteorological and mountain valley conditions. Nitrogenous pollutants were relatively strongly correlated with PM variables.
View Article and Find Full Text PDFThe U.S. Environmental Protection Agency (EPA) is involved in the discovery, evaluation, and application of low-cost air quality (AQ) sensors to support citizen scientists by directly engaging with them in the pursuit of community-based interests.
View Article and Find Full Text PDFThe analytical capabilities associated with the use of silylation reactions have been extended to a new class of organic molecules, nitroaromatic compounds (NACs). These compounds are a possible contributor to urban particulate matter of secondary origin which would make them important analytes due to their (1) detrimental health effects, (2) potential to affect aerosol optical properties, and (3) and usefulness for identifying PM from biomass burning. The technique is based on derivatization of the parent NACs by using N,O-bis-(trimethylsilyl)-trifluoro acetamide, one of the most prevalent derivatization reagent for analyzing hydroxylated molecules, followed by gas chromatography-mass spectrometry using electron ionization (EI) and methane chemical ionization (CI).
View Article and Find Full Text PDFA sample integrity evaluation and an interlaboratory comparison were conducted in application of U.S. Environmental Protection Agency (EPA) Methods 325A and 325B for diffusively monitoring benzene and other selected volatile organic compounds (VOCs) using Carbopack X sorbent tubes.
View Article and Find Full Text PDFUnlabelled: Select volatile organic compounds (VOCs) were measured in the vicinity of a petroleum refinery and related operations in South Philadelphia, Pennsylvania, USA, using passive air sampling and laboratory analysis methods. Two-week, time-integrated samplers were deployed at 17 sites, which were aggregated into five site groups of varying distances from the refinery. Benzene, toluene, ethylbenzene, and xylene isomers (BTEX) and styrene concentrations were higher near the refinery's fenceline than for groups at the refinery's south edge, mid-distance, and farther removed locations.
View Article and Find Full Text PDFUnlabelled: A pilot study was conducted in application of the U.S. Environmental Protection Agency (EPA) Methods 325A/B variant for monitoring volatile organic compounds (VOCs) near two oil and natural gas (ONG) production well pads in the Texas Barnett Shale formation and Colorado Denver-Julesburg Basin (DJB), along with a traffic-dominated site in downtown Denver, CO.
View Article and Find Full Text PDFBackground: Polybrominated diphenyl ethers (PBDEs) are used as flame retardants in many household items. Given concerns over their potential adverse health effects, we identified predictors and evaluated temporal changes of PBDE serum concentrations.
Methods: PBDE serum concentrations were measured in young children (2-8 years old; N = 67), parents of young children (<55 years old; N = 90), and older adults (≥55 years old; N = 59) in California, with concurrent floor wipe samples collected in participants' homes in 2008-2009.
A simple, cost-effective method is described for the analysis of polybrominated diphenyl ethers (PBDEs) in house dust using pressurized fluid extraction, cleanup with modified silica solid phase extraction tubes, and fluorinated internal standards. There are 14 PBDE congeners included in the method, some typically contained in the commercial mixtures used as flame retardants, and some which are not routinely reported in the peer-reviewed literature. A gas chromatographic-mass spectrometry instrumental method provides baseline separation in <20 min, detection limits <20 ng/g, and quantitation limits <60 ng/g for most congeners.
View Article and Find Full Text PDFInfants and young children spend as much as 50h per week in child care and preschool. Although approximately 13 million children, or 65% of all U.S.
View Article and Find Full Text PDFSurface wipe sampling is a frequently used technique for measuring persistent pollutants in residential environments. One characteristic of this form of sampling is the need to extract the entire wipe sample to achieve adequate sensitivity and to ensure representativeness. Most surface wipe methods require collection of multiple samples for related chemicals or chemical classes having similar physiochemical properties.
View Article and Find Full Text PDF