Publications by authors named "Mariateresa Ciotti"

Cerebellar granule neurons develop postnatally from cerebellar granule precursors (GCPs), which are located in the external granule layer (EGL) where they massively proliferate. Thereafter, GCPs become postmitotic, migrate inward to form the internal granule layer (IGL), further differentiate and form synapses with Purkinje cell dendrites. We previously showed that the Btg family gene, Tis21/Btg2, is required for normal GCP migration.

View Article and Find Full Text PDF

Post-transcriptional gene regulation mediated by microRNAs (miRNAs) is implicated in memory formation; however, the function of miR-92 in this regulation is uncharacterized. The present study shows that training mice in contextual fear conditioning produces a transient increase in miR-92 levels in the hippocampus and decreases several miR-92 gene targets, including: (i) the neuronal Cl(-) extruding K(+) Cl(-) co-transporter 2 (KCC2) protein; (ii) the cytoplasmic polyadenylation protein (CPEB3), an RNA-binding protein regulator of protein synthesis in neurons; and (iii) the transcription factor myocyte enhancer factor 2D (MEF2D), one of the MEF2 genes which negatively regulates memory-induced structural plasticity. Selective inhibition of endogenous miR-92 in CA1 hippocampal neurons, by a sponge lentiviral vector expressing multiple sequences imperfectly complementary to mature miR-92 under the control of the neuronal specific synapsin promoter, leads to up-regulation of KCC2, CPEB3 and MEF2D, impairs contextual fear conditioning, and prevents a memory-induced increase in the spine density.

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease (AD) is characterized by the harmful buildup of amyloid-β (Aβ) peptides, which damage neurons and lead to cell loss, with inflammation playing a key role in this process.
  • The study found that CCL2, a protein linked to inflammation and higher in Alzheimer's patients, is crucial in the toxic effects of Aβ on neurons.
  • Bindarit, a compound that reduces CCL2 production, showed protective effects against Aβ-induced cell death in lab tests, suggesting that CCL2 inhibitors could be a promising treatment for neurodegenerative conditions like AD.
View Article and Find Full Text PDF

Synapses are ultrastructural sites for memory storage in brain, and synaptic damage is the best pathologic correlate of cognitive decline in Alzheimer's disease (AD). Post-translational hyperphosphorylation, enzyme-mediated truncation, conformational modifications, and aggregation of tau protein into neurofibrillary tangles (NFTs) are hallmarks for a heterogeneous group of neurodegenerative disorders, so-called tauopathies. AD is a secondary tauopathy since it is pathologically distinguished by the presence of amyloid-beta (Abeta)-containing senile plaques and the presence of tau-positive NFTs in the neocortex and hippocampus.

View Article and Find Full Text PDF

The amyloid precursor protein (APP) and its proteolytic product amyloid beta (Abeta) are associated with both familial and sporadic forms of Alzheimer disease (AD). Aberrant expression and function of microRNAs has been observed in AD. Here, we show that in rat hippocampal neurons cultured in vitro, the down-regulation of Argonaute-2, a key component of the RNA-induced silencing complex, produced an increase in APP levels.

View Article and Find Full Text PDF

Che-1 is a recently identified human Rb binding protein that inhibits the Rb growth-suppressing function and regulates cell proliferation. Che-1 contacts the Rb and competes with HDAC1 for Rb-binding site, removing HDAC1 from the Rb/E2F cell cycle-regulated promoters. We have investigated the expression of Che-1 in neuronal cells and we showed that Che-1 directly interacts with Tau.

View Article and Find Full Text PDF