Recovery of lithium from brines by liquid-liquid solvent extraction (LLE) with diketones and synergistic co-ligands has been investigated for decades, but industrial application has been limited. In pursuit of a ligand with improved properties, a series of ketonamides with beta-carbonyl groups were designed, synthesized, and tested in extraction of lithium from sulfate and carbonate simulants of clay mineral tailing leachates. The best performing ligand, a novel tricarbonyl amide, was characterized for lithium extraction with and without four synergistic co-ligands.
View Article and Find Full Text PDFThis study investigated a novel membrane solvent extraction (MSX) process for the recovery and separation of lithium (Li) from clay minerals using a cation exchange organic extractant [di-(2-ethylhexyl)phosphoric acid] (DEHPA). The Li is selectively extracted from clay mineral leachate solution using highly efficient aluminum hydroxide sorbents to form lithium aluminum double hydroxide sulfate (LDH sulfate) as the precipitate. Several delithiation methods have been explored to separate Li from aluminum (Al).
View Article and Find Full Text PDFAluminum hydroxide, an abundant mineral found in nature, exists in four polymorphs: gibbsite, bayerite, nordstrandite, and doyleite. Among these polymorphs gibbsite, bayerite, and commercially synthesized amorphous aluminum hydroxide have been investigated as sorbent materials for lithium extraction from sulfate solutions. The amorphous form of Al(OH) exhibits a reactivity higher than that of the naturally occurring crystalline polymorphs in terms of extracting Li ions.
View Article and Find Full Text PDFHighly dense and magnetically anisotropic rare earth bonded magnets have been fabricated packing bimodal magnetic particles using a batch extrusion process followed by compression molding technology. The bimodal feedstock was a 96 wt% magnet powder mixture, with 40% being anisotropic Sm-Fe-N (3 μm) and 60% being anisotropic Nd-Fe-B (100 μm) as fine and coarse particles, respectively; these were blended with a 4 wt% polyphenylene sulfide (PPS) polymer binder to fabricate the bonded magnets. The hybrid bonded magnet with an 81 vol% magnet loading yielded a density of 6.
View Article and Find Full Text PDFThe microparticle quality and reproducibility of Li(NiCoMn)O (NCM811) cathode materials are important for Li-ion battery performance but can be challenging to control directly from synthesis. Here, a scalable reproducible synthesis process is designed based on slug flow to rapidly generate uniform micron-size spherical-shape NCM oxalate precursor microparticles at 25-34 °C. The whole process takes only 10 min, from solution mixing to precursor microparticle generation, without needing aging that typically takes hours.
View Article and Find Full Text PDFHalbach arrays are the most efficient closed structures for generating directed magnetic fields and gradients, and are widely used in various electric machines. We utilized fused deposition modeling-based Big Area Additive Manufacturing technology to print customized, compensated concentric Halbach array rings, using polyphenylene sulfide-bonded NdFeB permanent magnets for polarized neutron reflectometry. The Halbach rings could generate a 0 ≤ 0.
View Article and Find Full Text PDFLi[NiCoMn]O (LNCMO811) is the most studied cathode material for next-generation lithium-ion batteries with high energy density. However, available synthesis methods are time-consuming and complex, restricting their mass production. A scalable manufacturing process for producing NCM811 hydroxide precursors is vital for commercialization of the material.
View Article and Find Full Text PDFThe application of antiviral coatings to masks and respirators is a potential mitigating step toward reducing viral transmission during the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic. The use of appropriate masks, social distancing, and vaccines is the immediate solution for limiting the viral spread and protecting people from this virus. N95 respirator masks are effective in filtering the virus particles, but they cannot kill or deactivate the virus.
View Article and Find Full Text PDFThe current severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) pandemic has highlighted the need for personal protective equipment, specifically filtering facepiece respirators like N95 masks. While it is common knowledge that polypropylene (PP) is the industry standard material for filtration media, trial and error is often required to identify suitable commercial precursors for filtration media production. This work aims to identify differences between several commercial grades of PP and demonstrate the development of N95 filtration media with the intent that the industry partners can pivot and help address N95 shortages.
View Article and Find Full Text PDFWe report a three-stage bench-scale column extraction process to selectively extract lithium chloride from geothermal brine. The goal of this research is to develop materials and processing technologies to improve the economics of lithium extraction and production from naturally occurring geothermal and other brines for energy storage applications. A novel sorbent, lithium aluminum layered double hydroxide chloride (LDH), is synthesized and characterized with X-ray powder diffraction, scanning electron microscopy, inductively coupled plasma optical emission spectrometry (ICP-OES), and thermogravimetric analysis.
View Article and Find Full Text PDFSulfonated tire-derived carbons have been demonstrated to be high value-added carbon products of tire recycling in several energy storage system applications including lithium, sodium, potassium ion batteries and supercapacitors. In this communication, we compared different temperature pyrolyzed sulfonated tire-derived carbons with commercial graphite and unmodified/non-functionalized tire-derived carbon by studying the surface chemistry and properties, vibrational spectroscopy of the molecular structure, chemical bonding such as C-H bonding, and intermolecular interactions of the carbon materials. The nitrogen adsorption-desorption studies revealed the tailored micro and meso pore size distribution of the carbon during the sulfonation process.
View Article and Find Full Text PDFThe coupling of hollow carbon nanospheres with triblock copolymers is a promising strategy to fabricate mixed-matrix membranes. This is because the symmetric microporous shells combine with the hollow space to promote gas transport, and the unique soft-rigid molecular structure of triblock copolymers can accommodate a high loading of fillers without a significant loss of mechanical strength.
View Article and Find Full Text PDFSelf-assembly of block copolymers provides numerous opportunities to create functional materials, utilizing self-assembled microdomains with a variety of morphology and periodic architectures as templates for functional nanofillers. Here new progress is reported toward the fabrication of thermally responsive and electrically conductive polymeric self-assemblies made from a water-soluble poly(thiophene) derivative with short poly(ethylene oxide) side chains and Pluronic L62 block copolymer solution in water. The structural and electrical properties of conjugated polymer-embedded self-assembled architectures are investigated by combining small-angle neutron and X-ray scattering, coarse-grained molecular dynamics simulations, and impedance spectroscopy.
View Article and Find Full Text PDFVoltage spectroscopies in scanning probe microscopy (SPM) techniques are widely used to investigate the electrochemical processes in nanoscale volumes, which are important for current key applications, such as batteries, fuel cells, catalysts, and memristors. The spectroscopic measurements are commonly performed on a grid of multiple points to yield spatially resolved maps of reversible and irreversible electrochemical functionalities. Hence, the spacing between measurement points is an important parameter to be considered, especially for irreversible electrochemical processes.
View Article and Find Full Text PDFThe growth and proliferation of lithium (Li) dendrites during cell recharge are currently unavoidable, which seriously hinders the development and application of rechargeable Li metal batteries. Solid electrolytes with robust mechanical modulus are regarded as a promising approach to overcome the dendrite problems. However, their room-temperature ionic conductivities are usually too low to reach the level required for normal battery operation.
View Article and Find Full Text PDF