Publications by authors named "Marianthi G Ierapetritou"

Residence time distribution (RTD) method has been widely used in the pharmaceutical manufacturing for understanding powder dynamics within unit operations and continuous integrated manufacturing lines. The dynamics thus captured is then used to develop predictive models for unit operations and important RTD-based applications ensuring product quality assurance. Despite thorough efforts in tracer selection, data acquisition, and calibration model development to obtain tracer concentration profiles for RTD studies, there can exist significant noise in these profiles.

View Article and Find Full Text PDF

The identification of process Design Space (DS) is of high interest in highly regulated industrial sectors, such as pharmaceutical industry, where assurance of manufacturability and product quality is key for process development and decision-making. If the process can be controlled by a set of manipulated variables, the DS can be expanded in comparison to an open-loop scenario, where there are no controls in place. Determining the benefits of control strategies may be challenging, particularly when the available model is complex and computationally expensive - which is typically the case of pharmaceutical manufacturing.

View Article and Find Full Text PDF

Residence time distribution (RTD) has been widely applied across various fields of chemical engineering, including pharmaceutical manufacturing, for applications such as material traceability, quality assurance, system health monitoring, and fault detection. Determination of a representative RTD, in principle, requires an accurate process analytical technology (PAT) procedure capturing the entire range of tracer concentrations from zero to maximum. Such a wide concentration range creates at least two problems: i) decreased accuracy of the model across the entire range of concentrations, relating to limit of quantification, and ii) ambiguity associated with the detection of the tracer for low concentration levels, relating to limit of detection (LOD).

View Article and Find Full Text PDF

Residence time distribution (RTD) is a probability density function that describes the time materials spend inside a system. It is a promising tool for mixing behavior characterization, material traceability, and real-time quality control in pharmaceutical manufacturing. However, RTD measurements are accompanied with some degree of uncertainties because of process fluctuation and variation, measurement error, and experimental variation among different replicates.

View Article and Find Full Text PDF

As the pharmaceutical industry modernizes its manufacturing practices and incorporates more efficient processing approaches, it is important to reevaluate which process design elements affect product quality and the means to study these systems. The purpose of this work is to provide insight on a methodology to correlate the effect of raw material properties to equipment and process performance using both data-driven and semi-empirical models. In this work, lubricated blends of pharmaceutically-relevant materials were made using varying levels of magnesium stearate, ranging from 0.

View Article and Find Full Text PDF

Circadian rhythms play an important role in maintaining homeostasis and solid organ function. The purpose of this study is to assess the implications of burn injury in rats on the underlying circadian patterns of gene expression in liver. Circadian-regulated genes and burn-induced genes were identified by applying consensus clustering methodology to temporally differentially expressed probe sets obtained from burn and sham-burn data sets.

View Article and Find Full Text PDF

Background: The circadian clock is a critical regulator of biological functions controlling behavioral, physiological and biochemical processes. Because the liver is the primary regulator of metabolites within the mammalian body and the disruption of circadian rhythms in liver is associated with severe illness, circadian regulators would play a strong role in maintaining liver function. However, the regulatory structure that governs circadian dynamics within the liver at a transcriptional level remains unknown.

View Article and Find Full Text PDF

The changes that occur in mammalian systems following trauma and sepsis, termed systemic inflammatory response syndrome, elicit major changes in carbohydrate, protein, and energy metabolism. When these events persist for too long they result in a severe depletion of lean body mass, multiple organ dysfunction, and eventually death. Nutritional supplementation has been investigated to offset the severe loss of protein, and recent evidence suggests that diets enriched in branched-chain amino acids (BCAAs) may be especially beneficial.

View Article and Find Full Text PDF

Liver metabolism is altered after systemic injuries such as burns and trauma. These changes have been elucidated in rat models of experimental burn injury where the liver was isolated and perfused ex vivo. Because these studies were performed in fasted animals to deplete glycogen stores, thus simplifying quantification of gluconeogenesis, these observations reflect the combined impact of fasting and injury on liver metabolism.

View Article and Find Full Text PDF

Previously, we have shown that systemic insults in single injury models produced immunosuppressive effects in burn, and a strong acute phase response in sepsis through hepatic gene expression. In order to investigate the implications of these effects on a combined injury, a double hit model was explored to mimic the progression of clinical burn-sepsis. Rodents were subjected to a 20% total body surface area (TSA) full-thickness burn injury, and 48 hours later underwent cecal ligation and puncture (CLP) to induce sepsis.

View Article and Find Full Text PDF

Background: Despite the fact that the treatment options for septic patients have been significantly improved, the pathophysiologic changes caused by various septic cases have not been well understood. One commonly observed clinical phenomenon is the onset of a polymicrobial infection caused by bacteria that originate in the intestine but enter the peritoneum via translocation from the gut. This triggers a systemic inflammatory response via the innate immune system, which needs to be well characterized.

View Article and Find Full Text PDF

Burn injuries together with its subsequent complications, mainly bacterial infections originating from gastrointestinal tract, activate the host immune system through stimulation of a series of local and systemic responses, including the release of inflammatory mediators. To gain a more comprehensive understanding of these complex physiological changes and to propose therapeutic approaches to combat the deleterious consequences of burn and septic shocks, it is essential to analyze animal models of burn and sepsis. In this study, we analyzed the long term profiles of cytokines and chemokines in rat models which received burn injury followed 2 days later by cecal ligation and puncture (CLP) to induce sepsis and were sacrificed at different time points within 10 days (0, 1, 2, 3, 4, 7 and 10 days).

View Article and Find Full Text PDF

Background: Sepsis remains a major clinical challenge in intensive care units. The difficulty in developing new and more effective treatments for sepsis exemplifies our incomplete understanding of the underlying pathophysiology of it. One of the more widely used rodent models for studying polymicrobial sepsis is cecal ligation and puncture (CLP).

View Article and Find Full Text PDF

A combination of analytical and statistical methods is used to improve a tablet coating process guided by quality by design (QbD) principles. A solid dosage form product was found to intermittently exhibit bad taste. A suspected cause was the variability in coating thickness which could lead to the subject tasting the active ingredient in some tablets.

View Article and Find Full Text PDF

The liver has many complex physiological functions, including lipid, protein and carbohydrate metabolism, as well as bile and urea production. It detoxifies toxic substances and medicinal products. It also plays a key role in the onset and maintenance of abnormal metabolic patterns associated with various disease states, such as burns, infections and major traumas.

View Article and Find Full Text PDF

Metabolic engineering tools have been widely applied to living organisms to gain a comprehensive understanding about cellular networks and to improve cellular properties. Metabolic flux analysis (MFA), flux balance analysis (FBA), and metabolic pathway analysis (MPA) are among the most popular tools in stoichiometric network analysis. Although application of these tools into well-known microbial systems is extensive in the literature, various barriers prevent them from being utilized in mammalian cells.

View Article and Find Full Text PDF

Background: Severe trauma, including burns, triggers a systemic response that significantly impacts on the liver, which plays a key role in the metabolic and immune responses aimed at restoring homeostasis. While many of these changes are likely regulated at the gene expression level, there is a need to better understand the dynamics and expression patterns of burn injury-induced genes in order to identify potential regulatory targets in the liver. Herein we characterized the response within the first 24 h in a standard animal model of burn injury using a time series of microarray gene expression data.

View Article and Find Full Text PDF

Isolated liver perfusion systems have been extensively used to characterize intrinsic metabolic changes in liver under various conditions, including systemic injury, hepatotoxin exposure, and warm ischemia. Most of these studies were performed utilizing fasted animals prior to perfusion so that a simplified metabolic network could be used in order to determine intracellular fluxes. However, fasting induced metabolic alterations might interfere with disease related changes.

View Article and Find Full Text PDF

Severe burn trauma is generally associated with bacterial infections, which causes a more persistent inflammatory response with an ongoing hypermetabolic and catabolic state. This complex biological response, mediated by chemokines and cytokines, can be more severe when excessive interactions between the mediators take place. In this study, the early inflammatory response following the cecum ligation and puncture (CLP) or its corresponding control treatment (sham-CLP or SCLP) in burn (B) male rats was analyzed by measuring 23 different cytokines and chemokines.

View Article and Find Full Text PDF

Isolated liver perfusion systems have been used to characterize intrinsic metabolic changes in liver as a result of various perturbations, including systemic injury, hepatotoxin exposure, and warm ischemia. Most of these studies were done using hyperoxic conditions (95% O(2)) but without the use of oxygen carriers in the perfusate. Prior literature data do not clearly establish the impact of oxygenation, and in particular that of adding oxygen carriers to the perfusate, on the metabolic functions of the liver.

View Article and Find Full Text PDF

An evaluation of the toxicogenomic data set for dibutyl phthalate (DBP) and male reproductive developmental effects was performed as part of a larger case study to test an approach for incorporating genomic data in risk assessment. The DBP toxicogenomic data set is composed of nine in vivo studies from the published literature that exposed rats to DBP during gestation and evaluated gene expression changes in testes or Wolffian ducts of male fetuses. The exercise focused on qualitative evaluation, based on a lack of available dose-response data, of the DBP toxicogenomic data set to postulate modes and mechanisms of action for the male reproductive developmental outcomes, which occur in the lower dose range.

View Article and Find Full Text PDF

The inflammatory response, and its subsequent resolution, are the result of a very complex cascade of events originating at the site of injury or infection. When the response is severe and persistent, Systemic Inflammatory Response Syndrome can set in, which is associated with a severely debilitating systemic hypercatabolic state. This complex behavior, mediated by cytokines and chemokines, needs to be further explored to better understand its systems properties and potentially identify multiple targets that could be addressed simultaneously.

View Article and Find Full Text PDF

When cultured hepatocytes are exposed to challenging environments such as plasma, they frequently suffer a decline in liver-specific functions. Media supplements are sought to reduce or eliminate this effect. A rational design approach for amino acid supplementation in hepatocyte culture has been developed in our prior work, and designed amino acid supplementation (DAA) was found to increase urea and albumin production.

View Article and Find Full Text PDF

Pathway analysis is a useful tool which reveals important metabolic network properties. However, the big challenge is to propose an objective function for estimating active pathways, which represent the actual state of network. In order to provide weight values for all possible pathways within the metabolic network, this study presents different approaches, considering the structural and physiological properties of the metabolic network, aiming at a unique decomposition of the flux vector into pathways.

View Article and Find Full Text PDF

Pathway activity level analysis, the approach pursued in this study, focuses on all genes that are known to be members of metabolic and signaling pathways as defined by the KEGG database. The pathway activity level analysis entails singular value decomposition (SVD) of the expression data of the genes constituting a given pathway. We explore an extension of the pathway activity methodology for application to time-course microarray data.

View Article and Find Full Text PDF