Men with nonalcoholic fatty liver disease (NAFLD) are more exposed to nonalcoholic steatohepatitis (NASH) and liver fibrosis than women. However, the underlying molecular mechanisms of NALFD sex dimorphism are unclear. We combined gene expression, histological and lipidomic analyses to systematically compare male and female liver steatosis.
View Article and Find Full Text PDFLong bones from mammals host blood cell formation and contain multiple cell types, including adipocytes. Physiological functions of bone marrow adipocytes are poorly documented. Herein, we used adipocyte-deficient PPARγ-whole body null mice to investigate the consequence of total adipocyte deficiency on bone homeostasis in mice.
View Article and Find Full Text PDFBackground: The peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-dependent transcription factor involved in many aspects of metabolism, immune response and development. Numerous studies relying on tissue-specific invalidation of the Pparg gene have shown distinct facets of its activity, whereas the effects of its systemic inactivation remain unexplored due to embryonic lethality. By maintaining PPARγ expression in the placenta, we recently generated a mouse model carrying Pparg full body deletion (Pparg), which in contrast to a previously published model is totally deprived of any form of adipose tissue.
View Article and Find Full Text PDFAdult hematopoiesis takes place in the perivascular zone of the bone cavity, where endothelial cells, mesenchymal stromal/stem cells and their derivatives such as osteoblasts are key components of bone marrow (BM) niches. Defining the contribution of BM adipocytes to the hematopoietic stem cell niche remains controversial. While an excess of medullar adiposity is generally considered deleterious for hematopoiesis, an active role for adipocytes in shaping the niche has also been proposed.
View Article and Find Full Text PDFProtein oxidation and ubiquitination of brain proteins are part of mechanisms that modulate protein function or that inactivate proteins and target misfolded proteins to degradation. In this study, we focused on brain aging and on mechanism involved in neurodegeneration such as events occurring in Alzheimer's disease (AD). The goal was to identify differences in nitrosylated proteins - at cysteine residues, and in the composition of ubiquinated proteins between aging and Alzheimer's samples by using a proteomic approach.
View Article and Find Full Text PDF