Publications by authors named "Mariano Ruiz-Gayo"

Article Synopsis
  • Early calorie-rich diets disrupt circadian rhythms and negatively affect memory in mice, but time-restricted feeding (TRF) can restore these issues.
  • The study used methods like indirect calorimetry and behavioral tasks to analyze metabolic rhythms, memory, and molecular changes after feeding mice a high fat-high sucrose diet followed by TRF.
  • Results showed that TRF improved metabolism and memory independently of body fat levels, linked to thyroid hormone signaling and gene expression changes in the hippocampus.
View Article and Find Full Text PDF

Consumption of saturated fat-enriched diets during adolescence has been closely associated with the reduction of hippocampal synaptic plasticity and the impairment of cognitive function. Nevertheless, the effect of long-term intake of these foods has not yet been studied. In the present study, we have investigated the effect of a treatment, lasting for 40 weeks, with a diet enriched in saturated fat (SOLF) on i) spatial learning and memory, ii) hippocampal synaptic transmission and plasticity, and iii) hippocampal gene expression levels in aged male and female mice.

View Article and Find Full Text PDF

Short-chain fatty acids, such as butyric acid, derived from the intestinal fermentation of dietary fiber, have been proposed as a treatment for certain pathologies of the central nervous system. Our research group has shown that tributyrin (TB), a butyric acid prodrug, reverses deficits in spatial memory and modulates hippocampal synaptic plasticity. In the present work, diets enriched in either saturated (SOLF; Saturated OiL-enriched Food) or unsaturated (UOLF; Unsaturated OiL-enriched Food) fat were supplied during either 2 h or 8 weeks to 5-week-old male and female mice undergoing a treatment schedule with TB.

View Article and Find Full Text PDF

Leptin receptors (LepR) are expressed in brain areas controlling food intake homeostasis, such as the hypothalamus, the hippocampus and the prefrontal cortex. In a previous study we reported that long-term intake of saturated and monounsaturated fat alters hypothalamic LepR signalling. The current study aims at investigating the effect of foods high in either saturated (SOLF) or monounsaturated fat (UOLF) on LepR functionality in the hippocampus and the prefrontal cortex.

View Article and Find Full Text PDF

Elevated intake of fat modulates l-glutamate (l-Glu) turnover within the hippocampus (HIP). Our aim has been to investigate the effect of saturated vs unsaturated fat on the content of l-Glu and other amino acids involved in synaptic transmission within the HIP. The study was carried out in male mice fed (2 h or 8 weeks) with standard chow or with diets enriched either with saturated (SOLF) or unsaturated triglycerides (UOLF).

View Article and Find Full Text PDF

High-fat diets enriched with lauric acid (SOLF) do not enhance leptin production despite expanding white adipose tissue (WAT). Our study aimed at identifying the influence of SOLF vs. oleic acid-enriched diets (UOLF) on the autoparacrine effect of leptin and was carried out on eight-week-old mice consuming control chow, UOLF or SOLF.

View Article and Find Full Text PDF

Background And Purpose: Cholecystokinin (CCK) promotes triglyceride storage and adiponectin production in white adipose tissue (WAT), suggesting that CCK modulates WAT homeostasis. Our goal was to investigate the role of CCK in regulating the expression and function of the aquaglycerol channel aquaporin 7 (AQP7), a protein that is pivotal for maintaining adipocyte homeostasis and preserving insulin responsiveness.

Experimental Approach: The effect of the bioactive fragment of CCK, CCK-8, in regulating adipose AQP7 expression and glycerol efflux was assessed in rats as well as in preadipocytes.

View Article and Find Full Text PDF

Background: Short chain fatty acids (SCFA), such as butyric acid (BA), derived from the intestinal fermentation of dietary fiber and contained in dairy products, are gaining interest in relation to their possible beneficial effects on neuropsychological disorders.

Methods: C57BL/6J male mice were used to investigate the effect of tributyrin (TB), a prodrug of BA, on hippocampus (HIP)-dependent spatial memory, HIP synaptic transmission and plasticity mechanisms, and the expression of genes and proteins relevant to HIP glutamatergic transmission.

Results: Ex vivo studies, carried out in HIP slices, revealed that TB can transform early-LTP into late-LTP (l-LTP) and to rescue LTP-inhibition induced by scopolamine.

View Article and Find Full Text PDF

Background: Development of obesity and its comorbidities is not only the result of excess energy intake, but also of dietary composition. Understanding how hypothalamic metabolic circuits interpret nutritional signals is fundamental to advance towards effective dietary interventions.

Objective: We aimed to determine the metabolic response to diets enriched in specific fatty acids.

View Article and Find Full Text PDF

Vegetable oils such as palm oil (enriched in saturated fatty acids, SFA) and high-oleic-acid sunflower oil (HOSO, containing mainly monounsaturated fatty acids, MUFA) have emerged as the most common replacements for trans-fats in the food industry. The aim of this study is to analyze the impact of SFA and MUFA-enriched high-fat (HF) diets on endothelial function, vascular remodeling, and arterial stiffness compared to commercial HF diets. Five-week-old male C57BL6J mice were fed a standard (SD), a HF diet enriched with SFA (saturated oil-enriched Food, SOLF), a HF diet enriched with MUFA (unsaturated oil-enriched Food, UOLF), or a commercial HF diet for 8 weeks.

View Article and Find Full Text PDF

The interaction between meal timing and light regulates circadian rhythms in mammals and not only determines the sleep-wake pattern but also the activity of the endocrine system. Related with that, the necessity to fulfill energy needs is a driving force that requires the participation of cognitive skills whose performance has been shown to undergo circadian variations. These facts have led to the concept that cognition and feeding behaviour can be analysed from a chronobiological perspective.

View Article and Find Full Text PDF

The aim of this study was to indentify the involvement of leptin receptors (LepR) in astrocytes in hippocampal synaptic transmission and plasticity and metabolism. To this end we used a genetic mouse model (GFAP-LepR) of specific LepR ablation in GFAP positive cells and recorded excitatory postsynaptic potentials (fEPSPs) within the CA1 area. Glutamate (Glu) uptake and the expression of Glu transporters (EEAT3, GLT-1 and GLAST) and enzymes involved in Glu metabolism (glutamine synthase, GABA decarboxylase 65 and 67) were quantified.

View Article and Find Full Text PDF

Background: Dietary factors have significant effects on the brain, modulating mood, anxiety, motivation and cognition. To date, no attention has been paid to the consequences that the combination of ethanol (EtOH) and a high-fat diet (HFD) have on learning and mood disorders during adolescence. The aim of the present work was to evaluate the biochemical and behavioral consequences of ethanol binge drinking and an HFD consumption in adolescent mice.

View Article and Find Full Text PDF

Intermittent and excessive ethanol consumption over very short periods of time, known as binge drinking, is common in the adolescence, considered a vulnerable period to the effects of alcohol in terms of cognitive performance. One of the brain functions most drastically affected by ethanol in adolescent individuals seems to be spatial learning and memory dependent on the hippocampus. In the current study we have focused on the long-lasting effects on spatial learning and memory of intermittent and excessive alcohol consumption compared to chronic and moderate alcohol exposure during adolescence.

View Article and Find Full Text PDF

Scope: To identify the age-dependent effect of diets containing elevated amounts of either saturated or unsaturated fatty acids on cardiac steatosis in mice.

Methods And Results: Five- and eight-week-old C57BL/6J mice cohorts are given free access to either a saturated or an unsaturated fatty-acid-enriched diet during 8 weeks. Body weight (BW) and food intake are monitored during this period.

View Article and Find Full Text PDF

Background And Purpose: A cholecystokinin (CCK) system has been identified in white adipose tissue (WAT). Nevertheless, the endocrine actions of CCK on WAT remain unknown. Our goal was to investigate the role of CCK in regulating the production of adiponectin, an adipokine expressed in WAT, which is pivotal in preserving energy homeostasis.

View Article and Find Full Text PDF

Background: Non-alcoholic fatty liver disease (NAFLD), a condition that leads to fibrosis, is caused by intake of very high-fat diets (HFDs). However, while the negative impact on the liver of these diets has been an issue of interest, systematic research on the effect of HFDs are lacking.

Objective: To characterize the overall impact of HFDs on both molecular and morphological signs of liver remodeling.

View Article and Find Full Text PDF

The negative impact of obesity on neurocognitive functioning is an issue of increasing clinical interest. Over the last decade, a number of studies have analyzed the influence of high-fat diets (HFDs) on cognitive performance, particularly in adolescent individuals. Different approaches, including behavioral, neurochemical, electrophysiological and morphological studies, have been developed to address the effect of HFDs on neural processes interfering with learning and memory skills in rodents.

View Article and Find Full Text PDF

Aim: Cholecystokinin (CCK) participates in the storage of dietary triglycerides in white adipose tissue (WAT). Our goal was to characterize, both in subcutaneous (Sc-WAT) and visceral WAT (Vis-WAT), the functional expression of the two known CCK receptors, CCK-1 (CCK-1R) and CCK-2 (CCK-2R), as well as of CCK.

Main Methods: Gene and protein expression was assessed in different cell types of rat and human WAT by means of RT-PCR and western-blot, respectively.

View Article and Find Full Text PDF

The incorporation of plasma triglyceride (TG) fatty acids to white adipose tissue (WAT) depends on lipoprotein lipase (LPL), which is regulated by angiopoietin-like protein-4 (ANGPTL-4), an unfolding molecular chaperone that converts active LPL dimers into inactive monomers. The production of ANGPTL-4 is promoted by fasting and repressed by feeding. We hypothesized that the postprandial hormone cholecystokinin (CCK) facilitates the storage of dietary TG fatty acids in WAT by regulating the activity of the LPL/ANGPTL-4 axis and that it does so by acting directly on CCK receptors in adipocytes.

View Article and Find Full Text PDF

High-fat diets (HFD) impair hippocampal-dependent learning and memory and produce important changes in synaptic transmission by enhancing glutamate uptake, decreasing synaptic efficacy, and inhibiting plasticity mechanisms such as N-methyl-D-aspartate-mediated long-term depression (LTD) within the hippocampus. Adolescent animals seem to be particularly susceptible to the detrimental effect of HFD as dietary treatments carried out between weaning and early adulthood are much more efficient in terms of hippocampal damage that those carried out during the adult period. As palmitic acid is the most abundant saturated fatty acid in HFD, its effect on hippocampal function needs to be studied.

View Article and Find Full Text PDF

Recent studies point to dietary factors as important effectors in the brain and epidemiological studies suggest a direct relationship between mood and anxiety disorders, cognitive impairment and obesity. Nevertheless the link between the consumption of high-fat diets (HFD) and emotional disorders still remains unclear. This issue is of particular interest during adolescence, which is an important period for shaping learning and memory acquisition that can be particularly sensitive to the detrimental effects of HFD.

View Article and Find Full Text PDF

Purpose: Our aim was to characterize the effect of an unfamiliar high-fat diet (HFD) on circadian feeding behaviour, plasma parameters, body weight (BW), and gene expression in the prefrontal cortex (PFC) of adolescent male mice. To this end, mice were allowed to consume a HFD during 48 h, but one group was allowed a free choice of HFD or normal chow (FC-HFD), while the other was restricted to a non-optional unfamiliar HFD feeding (NOP-HFD).

Methods: Energy intake was monitored at 6-h intervals during 48 h.

View Article and Find Full Text PDF

We have investigated in adolescent mice the effect of subchronic leptin on (i) leptin receptor expression and functionality, and (ii) dopamine-related gene expression (tyrosine hydroxylase, Th; dopamine type-1 receptor, Drd1; dopamine type-2 receptor, Drd2) within the prefrontal cortex (PFC), which is involved in sensory perception of food and reward sensitivity, and the hippocampus, a brain area sensitive to food composition and pivotal in learning and memory processes related to feeding behaviour. Here, we show that leptin treatment triggered leptin resistance both in the hippocampus and in the PFC. In contrast, leptin induced the upregulation of dopamine-related genes in the PFC, whereas it failed to modify the expression of these genes in the hippocampus.

View Article and Find Full Text PDF