Publications by authors named "Mariano Redondo-Horcajo"

Glutathione (GSH) plays a vital role in the regulation of intracellular functions which alterations in physiological glutathione levels are associated to various diseases. Molecular bioimaging is a sensitive method for GSH detection, but challenges persist in the development of fluorescent probes, mainly concerning long-term tracking of intracellular GSH concentration because of aggregation of molecular probes and their washout in cells. Engineered nanomaterials have shown great promise for increasing the disease diagnosis accuracy.

View Article and Find Full Text PDF

Among broad-spectrum anticancer agents, paclitaxel (PTX) has proven to be one of the most effective against solid tumors for which more specific treatments are lacking. However, drawbacks such as neurotoxicity and the development of resistance reduce its therapeutic efficacy. Therefore, there is a need for compounds able to improve its activity by synergizing with it or potentiating its effect, thus reducing the doses required.

View Article and Find Full Text PDF

We describe the synthesis and biochemical and cellular profiling of five partially reduced or demethylated analogs of the marine macrolide (-)-zampanolide (ZMP). These analogs were derived from 13-desmethylene-(-)-zampanolide (DM-ZMP), which is an equally potent cancer cell growth inhibitor as ZMP. Key steps in the synthesis of all compounds were the formation of the dioxabicyclo[15.

View Article and Find Full Text PDF

Current advances in materials science have demonstrated that extracellular mechanical cues can define cell function and cell fate. However, a fundamental understanding of the manner in which intracellular mechanical cues affect cell mechanics remains elusive. How intracellular mechanical hindrance, reinforcement, and supports interfere with the cell cycle and promote cell death is described here.

View Article and Find Full Text PDF

Current microtechnologies have shown plenty of room inside a living cell for silicon chips. Microchips as barcodes, biochemical sensors, mechanical sensors and even electrical devices have been internalized into living cells without interfering their cell viability. However, these technologies lack from the ability to trap and preconcentrate cells in a specific region, which are prerequisites for cell separation, purification and posterior studies with enhanced sensitivity.

View Article and Find Full Text PDF

We have developed a new method for the stereoselective establishment of the -acyl hemiaminal moiety in zampanolide-type structures that involves the reaction of ()-sorbamide () with BINAL-H and subsequent amide transfer from a putative aluminum carboximidoate complex to the aldehyde moiety of a dactylolide precursor, such as or . The method has enabled the efficient synthesis of 13-desmethylene-(-)-zampanolide (), which was found to be an equipotent cell growth inhibitor as the natural product (-)-zampanolide ().

View Article and Find Full Text PDF

A new simplified, epoxide-free epothilone analog was prepared incorporating an N-(2-hydroxyethyl)-benzimidazole side chain, which binds to microtubules with high affinity and inhibits cancer cell growth in vitro with nM potency. Building on this scaffold, a disulfide-linked conjugate with the purported EGFR-binding (EGFR, epidermal growth factor receptor) peptide GE11 was then prepared. The conjugate retained significant microtubule-binding affinity, in spite of the size of the peptide attached to the benzimidazole side chain.

View Article and Find Full Text PDF

Paclitaxel (PTX) is currently used as a front-line chemotherapeutic agent for several types of cancer, including ovarian carcinoma; however, PTX-resistance frequently arises through multiple mechanisms. The development of new strategies using natural compounds and PTX in combination has been the aim of several prior studies, in order to enhance the efficacy of chemotherapy. In this study, we found the following: (i) gallic acid (GA), a phenolic compound, potentiated the capacity of PTX to decrease proliferation and to cause G2/M cycle arrest in the PTX-resistant A2780AD ovarian cancer cell line; (ii) GA exerted a pro-oxidant action by increasing the production of reactive oxygen species (ROS), and co-treatment with the antioxidant agent N‑acetyl-L‑cysteine (NAC) prevented GA+PTX-induced cell proliferation inhibition and G2/M phase arrest; (iii) PTX stimulated ERK phosphorylation/activation, and co-treatment with the MEK/ERK inhibitor PD98049 potentiated the proliferation inhibition and G2/M phase arrest; (iv) and finally, GA abrogated the PTX-induced stimulation of ERK phosphorylation, a response that was prevented by co-treatment with NAC.

View Article and Find Full Text PDF

In our efforts to improve the efficacy of taxane-based microtubule (MT) stabilizing agents against tumor drug resistance mediated by multiple mechanisms, two clinically relevant factors were focused: i.e., P-glycoprotein and βIII-tubulin overexpression.

View Article and Find Full Text PDF

Microtubule-stabilizing agents (MSAs) are widely used in chemotherapy. Using X-ray crystallography we elucidated the detailed binding modes of two potent MSAs, (+)-discodermolide (DDM) and the DDM-paclitaxel hybrid KS-1-199-32, in the taxane pocket of β-tubulin. The two compounds bind in a very similar hairpin conformation, as previously observed in solution.

View Article and Find Full Text PDF

A combined biochemical, structural, and cell biology characterization of dictyostatin is described, which enables an improved understanding of the structural determinants responsible for the high-affinity binding of this anticancer agent to the taxane site in microtubules (MTs). The study reveals that this macrolide is highly optimized for MT binding and that only a few of the structural modifications featured in a library of synthetic analogues resulted in small gains in binding affinity. The high efficiency of the dictyostatin chemotype in overcoming various kinds of clinically relevant resistance mechanisms highlights its potential for therapeutic development for the treatment of drug-resistant tumors.

View Article and Find Full Text PDF

Predicting the cellular response of compounds is a challenge central to the discovery of new drugs. Compound biological signatures have risen as a way of representing the perturbation produced by a compound in the cell. However, their ability to encode specific phenotypic information and generating tangible predictions remains unknown, mainly because of the inherent noise in such data sets.

View Article and Find Full Text PDF

Four natural analogues of podophyllotoxin obtained from the Mexican medicinal plant Bursera fagaroides, namely, acetyl podophyllotoxin (2), 5'-desmethoxy-β-peltatin A methyl ether (3), 7',8'-dehydro acetyl podophyllotoxin (4), and burseranin (5), have been characterized, and their interactions with tubulin have been investigated. Cytotoxic activity measurements, followed by immunofluorescence microscopy and flow cytometry studies, demonstrated that these compounds disrupt microtubule networks in cells and cause cell cycle arrest in the G2/M phase in the A549 cell line. A tubulin binding assay showed that compounds 1-4 were potent assembly inhibitors, displaying binding to the colchicine site with Kb values ranging from 11.

View Article and Find Full Text PDF

A series of new sulfanyltriazolylnaphthalenols (10a-f and 13a-f) and sulfanyltriazolylnaphthalene-1,4-diones (14a-f) were synthesized and evaluated against a panel of cancer cell lines. Among the tested compounds, 10b and 10d showed the best anti-proliferative activity with GI50 values ranging from 2.72 to 10 and 3.

View Article and Find Full Text PDF

We here report an investigation of the interactions with tubulin of two types of molecules of a hybrid structural type consisting in a combretastatin A-4 moiety and a simplified pironetin fragment. The cytotoxicities of the molecules on two reference tumoral cell lines were measured. In addition, the effects of the compounds on the cell cycle and on microtubule assembly were observed.

View Article and Find Full Text PDF

A series of new oxadiazoline-substituted naphthalenyl acetates 3a-e and oxadiazoline-substituted 4-methoxynaphthalenyl acetates 7b-e were synthesized and tested by the National Cancer Institute (NCI) for their in vitro anticancer activity. The two derivatives bearing acetoxy groups at the 1 and 3 positions of the phenyl ring 3c and 7c were the most active showing significant anticancer activity against all tested cancer cell lines, with GI50 values ranging from 0.175 to 3.

View Article and Find Full Text PDF

We here report the synthesis of a series of 12 hybrid molecules composed of a colchicine moiety and a pironetin analogue fragment. The two fragments are connected through an ester-amide spacer of variable length. The cytotoxic activities of these compounds and their interactions with tubulin have been investigated.

View Article and Find Full Text PDF

Two cis-12,13-cyclopropyl-epothilone B variants have been synthesized, differing only in the configuration of the stereocenters at C12 and C13. The syntheses were based on a common allylic alcohol intermediate that was converted into the corresponding diastereomeric hydroxymethyl-cyclopropanes by means of stereoselective Charette cyclopropanations. Macrocyclizations were accomplished through ring-closing metathesis (RCM).

View Article and Find Full Text PDF

In vitro mitogenesis assays have shown that sulfated glycosaminoglycans (GAGs; heparin and heparan sulfate) cause an enhancement of the mitogenic activity of fibroblast growth factors (FGFs). Herein, we report that the simultaneous presence of FGF and the GAG is not an essential requisite for this event to take place. Indeed, preincubation with heparin (just before FGF addition) of cells lacking heparan sulfate produced an enhancing effect equivalent to that observed when the GAG and the protein are simultaneously added.

View Article and Find Full Text PDF

The preparation of several new truncated analogues of the natural dihydropyrone pironetin is described. They differ from the natural product mainly in the suppression of some of the alkyl pendants in either the side chain or the dihydropyrone ring. Their cytotoxic activity and their interactions with tubulin have been investigated.

View Article and Find Full Text PDF

Deacetylcolchicine was reacted with substituted benzyl halides to provide a library of compounds for biological analysis. Compound 7 (3,4-difluorobenzyl-N-aminocolchicine) was shown to possess cytotoxicity in cancer cell lines in the low nanomolar range. Significantly, it showed no loss of activity in the resistant A2780AD ovarian carcinoma cell line known to overexpress the ABCB1 drug transporter and was also unaffected by overexpression of class III β-tubulin in HeLa transfected cells.

View Article and Find Full Text PDF

Colchicine was modified at the 10-OCH(3) position of the C-ring by reaction with heterocyclic amines or commercially available amines to afford a library of target colchicinoids in high yields (62-99%). Molecular modeling revealed that the incorporation of the linker groups led to a reduction in entropy and therefore binding affinity when compared with colchicine. Some colchicinoids were shown to be equicytotoxic with colchicine when evaluated in the DLD-1 colon cancer cells and retained activity in resistant A2780AD or HeLa cells with mutant Class III β-tubulin.

View Article and Find Full Text PDF

While metformin has been widely used to treat type 2 diabetes for the last fifty years, its mode of action remains unclear. Hence, we investigated the short-term alterations in energy metabolism caused by metformin administration in 3T3-L1 adipocytes. We found that metformin inhibited mitochondrial respiration, although ATP levels remained constant as the decrease in mitochondrial production was compensated by an increase in glycolysis.

View Article and Find Full Text PDF

The uncoupling proteins (UCPs) are mitochondrial carriers that modulate the energetic efficiency and, as a result, can lower superoxide levels. Here, we describe the discovery of a small-molecule inhibitor of the UCPs. Screening of potential UCP1 regulators led to the identification of chromane derivatives that inhibit its proton conductance.

View Article and Find Full Text PDF

Aims: Cyclosporine A (CsA) has represented a fundamental therapeutic weapon in immunosuppression for the past three decades. However, its clinical use is not devoid of side effects, among which hypertension and vascular injury represent a major drawback. Endothelial cells are able to generate reactive oxygen and nitrogen species upon exposure to CsA, including formation of peroxynitrite.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionrh8i9k3r986s589vm1nik47otmihinp9): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once