Publications by authors named "Mariano Di Trapani"

Circulating tumor cells (CTCs) are rare cells shed into the bloodstream by invasive tumors and their analysis offers a promising noninvasive tool to predict and monitor therapeutic responses. CTCs can be isolated from patient blood and their characterization at single-cell level can inform on the genomic landscape of a tumor. All CTC enrichment methods bear a burden of contaminating normal cells, which mandate a further step of purification to enable reliable downstream genetic analysis.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) are multipotent cells, immunomodulatory stem cells that are currently used for regenerative medicine and treatment of a number of inflammatory diseases, thanks to their ability to significantly influence tissue microenvironments through the secretion of large variety of soluble factors. Recently, several groups have reported the presence of extracellular vesicles (EVs) within MSC secretoma, showing their beneficial effect in different animal models of disease. Here, we used a standardized methodological approach to dissect the immunomodulatory effects exerted by MSC-derived EVs on unfractionated peripheral blood mononuclear cells and purified T, B and NK cells.

View Article and Find Full Text PDF

Both preclinical and clinical investigations suggest that Notch signalling is critical for the development of many cancers and for their response to chemotherapy. We previously showed that Notch inhibition abrogates stromal-induced chemoresistance in lymphoid neoplasms. However, the role of Notch in acute myeloid leukemia (AML) and its contribution to the crosstalk between leukemia cells and bone marrow stromal cells remain controversial.

View Article and Find Full Text PDF

The aim of this study was to assess the immune modulatory properties of human mesenchymal stromal cells obtained from bone marrow (BM-MSCs), fat (ASCs), and cord blood (CB-MSCs) in the presence of a hydroxyapatite and tricalcium-phosphate (HA/TCP) biomaterial as a scaffold for MSC delivery. In resting conditions, a short-term culture with HA/TCP did not modulate the anti-apoptotic and suppressive features of the various MSC types toward T, B, and NK cells; in addition, when primed with inflammatory cytokines, MSCs similarly increased their suppressive capacities in the presence or absence of HA/TCP. The long-term culture of BM-MSCs with HA/TCP induced an osteoblast-like phenotype with upregulation of OSTERIX and OSTEOCALCIN, similar to what was obtained with dexamethasone and, to a higher extent, with bone morphogenetic protein 4 (BMP-4) treatment.

View Article and Find Full Text PDF

Amniotic Fluid Stem (AFS) cells are broadly multipotent fetal stem cells derived from the positive selection and ex vivo expansion of amniotic fluid CD117/c-kit(pos) cells. Considering the differentiation potential in vitro toward cell lineages belonging to the three germ layers, AFS cells have raised great interest as a new therapeutic tool, but their immune properties still need to be assessed. We analyzed the in vitro immunological properties of AFS cells from different gestational age in coculture with T, B, and natural killer (NK) cells.

View Article and Find Full Text PDF

Allogeneic stem cell (SC)-based therapy is a promising tool for the treatment of a range of human degenerative and inflammatory diseases. Many reports highlighted the immune modulatory properties of some SC types, such as mesenchymal stromal cells (MSCs), but a comparative study with SCs of different origin, to assess whether immune regulation is a general SC property, is still lacking. To this aim, we applied highly standardized methods employed for MSC characterization to compare the immunological properties of bone marrow-MSCs, olfactory ectomesenchymal SCs, leptomeningeal SCs, and three different c-Kit-positive SC types, that is, amniotic fluid SCs, cardiac SCs, and lung SCs.

View Article and Find Full Text PDF