Publications by authors named "Marianneza Chatzipetrou"

In this paper, we present the development of a photonic biosensor device for cancer treatment monitoring as a complementary diagnostics tool. The proposed device combines multidisciplinary concepts from the photonic, nano-biochemical, micro-fluidic and reader/packaging platforms aiming to overcome limitations related to detection reliability, sensitivity, specificity, compactness and cost issues. The photonic sensor is based on an array of six asymmetric Mach Zender Interferometer (aMZI) waveguides on silicon nitride substrates and the sensing is performed by measuring the phase shift of the output signal, caused by the binding of the analyte on the functionalized aMZI surface.

View Article and Find Full Text PDF

Bioprinting techniques can be used for the in vitro fabrication of functional complex bio-structures. Thus, extensive research is being carried on the use of various techniques for the development of 3D cellular structures. This article focuses on direct writing techniques commonly used for the fabrication of cell structures.

View Article and Find Full Text PDF

In this paper, we present the immobilization of thiol-modified aptamers on alkyne- or alkene-terminated silicon nitride surfaces by laser-induced click chemistry reactions. The aptamers are printed onto the surface by laser-induced forward transfer (LIFT), which also induces the covalent bonding of the aptamers by thiol-ene or thiol-yne reactions that occur upon UV irradiation of the thiol-modified aptamers with ns laser pulses. This combination of LIFT and laser-induced click chemistry allows the creation of high-resolution patterns without the need for masks.

View Article and Find Full Text PDF

A novel nanoparticle based biosensor for the fast and simple detection of DNA hybridization events is presented. The sensor utilizes hybridized DNA's charge transport properties, combining them with metallic nanoparticle networks that act as nano-gapped electrodes. The DNA hybridization events can be detected by a significant reduction in the sensor's resistance due to the conductive bridging offered by hybridized DNA.

View Article and Find Full Text PDF

Superamphiphobic, (quasi-)ordered plasma-textured surfaces, coated with a perfluorinated monolayer, exhibit extreme resistance against drop-pinning for both water-like and low-surface-tension mixtures (36 mN m(-1)). The highest values reported here are 36 atm for a water-like mixture, 5 times higher than previously reported in the literature, and 7 atm for a low-surface-tension mixture, the highest ever reported value for lotus-leaf-inspired surfaces.

View Article and Find Full Text PDF