The expansion of cocoa farms is a major driver of deforestation and emissions in Ghana's high forest zone. The Ghana Cocoa Forest Reducing Emissions from Deforestation and Forest Degradation Program (REDD+) was launched as the world's first commodity-based initiative to address emissions from deforestation caused by cocoa production and generate non-carbon benefits. Hotspot Intervention Areas were established to implement the Ghana Cocoa REDD+ program.
View Article and Find Full Text PDFDecision-support tools (DSTs) synthesize complex information to assist environmental managers in the decision-making process. Here, we review DSTs applied in the Baltic Sea area, to investigate how well the ecosystem approach is reflected in them, how different environmental problems are covered, and how well the tools meet the needs of the end users. The DSTs were evaluated based on (i) a set of performance criteria, (ii) information on end user preferences, (iii) how end users had been involved in tool development, and (iv) what experiences developers/hosts had on the use of the tools.
View Article and Find Full Text PDFThis paper studies the relative importance of societal drivers and changing climate on anthropogenic nutrient inputs to the Baltic Sea. Shared Socioeconomic Pathways and Representative Concentration Pathways are extended at temporal and spatial scales relevant for the most contributing sectors. Extended socioeconomic and climate scenarios are then used as inputs for spatially and temporally detailed models for population and land use change, and their subsequent impact on nutrient loading is computed.
View Article and Find Full Text PDFThe Baltic Sea is suffering from eutrophication caused by nutrient discharges from land to sea, and these loads might change in a changing climate. We show that the impact from climate change by mid-century is probably less than the direct impact of changing socioeconomic factors such as land use, agricultural practices, atmospheric deposition, and wastewater emissions. We compare results from dynamic modelling of nutrient loads to the Baltic Sea under projections of climate change and scenarios for shared socioeconomic pathways.
View Article and Find Full Text PDFCoastal global oceans are expected to undergo drastic changes driven by climate change and increasing anthropogenic pressures in coming decades. Predicting specific future conditions and assessing the best management strategies to maintain ecosystem integrity and sustainable resource use are difficult, because of multiple interacting pressures, uncertain projections, and a lack of test cases for management. We argue that the Baltic Sea can serve as a time machine to study consequences and mitigation of future coastal perturbations, due to its unique combination of an early history of multistressor disturbance and ecosystem deterioration and early implementation of cross-border environmental management to address these problems.
View Article and Find Full Text PDFThe Baltic Sea provides benefits to all of the nine nations along its coastline, with some 85 million people living within the catchment area. Achieving improvements in water quality requires international cooperation. The likelihood of effective cooperation is known to depend on the distribution across countries of the benefits and costs of actions needed to improve water quality.
View Article and Find Full Text PDF