Publications by authors named "Marianne Van den Bree"

Rare recurrent copy number variants (CNVs) at chromosomal loci 22q11.2 and 16p11.2 are genetic disorders with lifespan risk for neuropsychiatric disorders.

View Article and Find Full Text PDF

Studies of longitudinal trends of depressive symptoms in young people could provide insight into aetiologic mechanism, heterogeneity and origin of common cardiometabolic comorbidities for depression. Depression is associated with immunological and metabolic alterations, but immunometabolic characteristics of developmental trajectories of depressive symptoms remain unclear. Using depressive symptoms scores measured on 10 occasions between ages 10 and 25 years in the Avon Longitudinal Study of Parents and Children (n=7302), we identified four distinct trajectories: low-stable (70% of the sample), adolescent-limited (13%), adulthood-onset (10%) and adolescent-persistent (7%).

View Article and Find Full Text PDF

A range of rare mutations involving micro-deletion or -duplication of genetic material (copy number variants (CNVs)) have been associated with high neurodevelopmental and psychiatric risk (ND-CNVs). Irritability is frequently observed in childhood neurodevelopmental conditions, yet its aetiology is largely unknown. Genetic variation may play a role, but there is a sparsity of studies investigating the presentation of irritability in young people with ND-CNVs.

View Article and Find Full Text PDF

Asymmetry between the left and right hemisphere is a key feature of brain organization. Hemispheric functional specialization underlies some of the most advanced human-defining cognitive operations, such as articulated language, perspective taking, or rapid detection of facial cues. Yet, genetic investigations into brain asymmetry have mostly relied on common variants, which typically exert small effects on brain-related phenotypes.

View Article and Find Full Text PDF

Rare recurrent copy number variants (CNVs) at chromosomal loci 22q11.2 and 16p11.2 are among the most common rare genetic disorders associated with significant risk for neuropsychiatric disorders across the lifespan.

View Article and Find Full Text PDF
Article Synopsis
  • 22q11.2 deletion syndrome (22q11DS) is the most common microdeletion in humans, linked to reduced gray matter volume and neuropsychiatric issues like cognitive impairment and psychosis.
  • A study involving 783 participants (470 with 22q11DS and 313 controls) used advanced brain imaging techniques to identify specific patterns of gray matter volume covariance associated with this syndrome.
  • Results indicated that individuals with 22q11DS show unique structural brain abnormalities, particularly in the cerebellum, and these alterations follow distinct patterns rather than a widespread decline.
View Article and Find Full Text PDF

Background: A range of rare mutations involving micro-deletion or -duplication of genetic material (copy number variants (CNVs)) have been associated with high neurodevelopmental and psychiatric risk (ND-CNVs). Irritability is frequently observed in childhood neurodevelopmental conditions, yet its aetiology is largely unknown. Genetic variation may play a role, but there is a sparsity of studies investigating presentation of irritability in young people with ND-CNVs.

View Article and Find Full Text PDF

Background: Individuals with 22q11.2 deletion are at considerably increased risk of neurodevelopmental and psychiatric conditions. There have been very few studies investigating how this risk manifests in early childhood and what factors may underlie developmental variability.

View Article and Find Full Text PDF
Article Synopsis
  • Carriers of specific genetic variants (1q21.1 distal and 15q11.2 BP1-BP2) show both regional and global brain structure differences compared to noncarriers, but analyzing these differences can be complicated.
  • The study used MRI data from various groups (carriers and noncarriers) to assess how regional brain characteristics diverge from overall brain structure differences.
  • Findings revealed that certain brain regions in carriers exhibited distinct patterns of cortical surface area and thickness that deviated from the global average, suggesting more complex effects of these genetic variants on brain development.
View Article and Find Full Text PDF

22q11.2 deletion syndrome, or 22q11.2DS, is a genetic syndrome associated with high rates of schizophrenia and autism spectrum disorders, in addition to widespread structural and functional abnormalities throughout the brain.

View Article and Find Full Text PDF

Congenital heart disease (CHD) affecting the conotruncal region of the heart, occurs in 40-50% of patients with 22q11.2 deletion syndrome (22q11.2DS).

View Article and Find Full Text PDF
Article Synopsis
  • CNVs are genetic variations that increase the risk of neurodevelopmental and psychiatric disorders, including autism and schizophrenia, impacting brain structures differently based on the specific CNV type.
  • A study was conducted using harmonized protocols on 675 CNV carriers and 782 controls, revealing that all CNVs affected subcortical brain structures like the hippocampus and amygdala, with unique subregional changes identifiable through shape analyses.
  • The results indicate that CNVs have varied effects on brain volume and cognition, with some clustering around adult-onset disorders while others align with autism, enhancing our understanding of the relationship between genetics and neuropsychiatric conditions.
View Article and Find Full Text PDF

Background: Many children with an intellectual or developmental disability (IDD) have associated autism spectrum disorders (ASD), as well as an increased risk of mental health difficulties. In a cohort with IDD of genetic aetiology, we tested the hypothesis that excess risk attached to those with ASD + IDD, in terms of both children's mental health and parental psychological distress.

Methods: Participants with a copy number variant or single nucleotide variant (5-19 years) were recruited via UK National Health Service.

View Article and Find Full Text PDF

Although many genetic risk factors for psychiatric and neurodevelopmental disorders have been identified, the neurobiological route from genetic risk to neuropsychiatric outcome remains unclear. 22q11.2 deletion syndrome (22q11.

View Article and Find Full Text PDF

Background: Genomic conditions can be associated with developmental delay, intellectual disability, autism spectrum disorder, and physical and mental health symptoms. They are individually rare and highly variable in presentation, which limits the use of standard clinical guidelines for diagnosis and treatment. A simple screening tool to identify young people with genomic conditions associated with neurodevelopmental disorders (ND-GCs) who could benefit from further support would be of considerable value.

View Article and Find Full Text PDF

Asymmetry between the left and right brain is a key feature of brain organization. Hemispheric functional specialization underlies some of the most advanced human-defining cognitive operations, such as articulated language, perspective taking, or rapid detection of facial cues. Yet, genetic investigations into brain asymmetry have mostly relied on common variant studies, which typically exert small effects on brain phenotypes.

View Article and Find Full Text PDF

22q11.2 deletion is one of the strongest known genetic risk factors for schizophrenia. Recent whole-genome sequencing of schizophrenia cases and controls with this deletion provided an unprecedented opportunity to identify risk modifying genetic variants and investigate their contribution to the pathogenesis of schizophrenia in 22q11.

View Article and Find Full Text PDF

Objectives: Copy number variants (CNVs) are well-known genetic pleiotropic risk factors for multiple neurodevelopmental and psychiatric disorders (NPDs) including autism (ASD) and schizophrenia (SZ). Overall, little is known about how different CNVs conferring risk for the same condition may affect subcortical brain structures and how these alterations relate to the level of disease risk conferred by CNVs. To fill this gap, we investigated gross volume, and vertex level thickness and surface maps of subcortical structures in 11 different CNVs and 6 different NPDs.

View Article and Find Full Text PDF

Copy number variations (CNVs) are rare genomic deletions and duplications that can affect brain and behaviour. Previous reports of CNV pleiotropy imply that they converge on shared mechanisms at some level of pathway cascades, from genes to large-scale neural circuits to the phenome. However, existing studies have primarily examined single CNV loci in small clinical cohorts.

View Article and Find Full Text PDF

Background: Current psychiatric diagnoses, although heritable, have not been clearly mapped onto distinct underlying pathogenic processes. The same symptoms often occur in multiple disorders, and a substantial proportion of both genetic and environmental risk factors are shared across disorders. However, the relationship between shared symptoms and shared genetic liability is still poorly understood.

View Article and Find Full Text PDF

Children with rare neurodevelopmental genetic conditions (ND-GCs) are at high risk for a range of neuropsychiatric conditions. Sleep symptomatology may represent a transdiagnostic risk indicator within this patient group. Here we present data from 629 children with ND-GCs, recruited via the United Kingdom's National Health Service medical genetic clinics.

View Article and Find Full Text PDF

Background: Caring for children with pathogenic neurodevelopmental Copy Number Variants (CNVs) (ie, deletions and duplications of genetic material) can place a considerable burden on parents and their quality of life. Our study is the first to examine the frequency of psychiatric diagnoses in mothers of children with CNVs compared with the frequency of psychiatric problems in age-matched mothers from a large community study.

Methods: Case-control study.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how different genetic factors, including oligogenic and polygenic variants, affect brain connectivity related to psychiatric disorders, aiming to better understand these complex relationships.
  • The research utilized resting-state functional MRI data from multiple datasets, conducting extensive connectome-wide association studies on various genetic risk factors and psychiatric conditions involving thousands of subjects.
  • Results showed that the impact on brain connectivity is strongest with psychiatric copy number variants (CNVs), while polygenic risk scores (PRSs) had relatively low effects, highlighting the challenges posed by genetic diversity in studying psychiatric conditions.
View Article and Find Full Text PDF