The four-carbon non-proteinogenic amino acid γ-aminobutyric acid (GABA) accumulates to high levels in plants in response to various abiotic and biotic stress stimuli, and plays a role in C:N balance, signaling, and as a transport regulator. Expression in Xenopus oocytes and voltage-clamping allowed the characterization of Arabidopsis GAT2 (At5g41800) as a low affinity GABA transporter with a K0.5GABA ~8 mM.
View Article and Find Full Text PDFLegumes form a symbiosis with rhizobia that convert atmospheric nitrogen (N2) to ammonia and provide it to the plant in return for a carbon and nutrient supply. Nodules, developed as part of the symbiosis, harbor rhizobia that are enclosed in a plant-derived symbiosome membrane (SM) to form an organelle-like structure called the symbiosome. In mature nodules exchanges between the symbionts occur across the SM.
View Article and Find Full Text PDFFor Trypanosoma brucei arginine and lysine are essential amino acids and therefore have to be imported from the host. Heterologous expression in Saccharomyces cerevisiae mutants identified cationic amino acid transporters among members of the T. brucei AAAP (amino acid/auxin permease) family.
View Article and Find Full Text PDFEssential amino acids cannot be synthesized by humans and animals. They often are limiting in plant-derived foods and determine the nutritional value of a given diet. Seeds and fruits often represent the harvestable portion of plants.
View Article and Find Full Text PDFAmino acid transporters are crucial for parasite survival since the cellular metabolism of parasitic protozoa depends on the up-take of exogenous amino acids. Amino acid transporters are also of high pharmacological relevance because they may mediate uptake of toxic amino acid analogues. In the present study we show that the eflornithine transporter AAT6 from Trypanosoma brucei (TbAAT6) mediates growth on neutral amino acids when expressed in Saccharomyces cerevisiae mutants.
View Article and Find Full Text PDFThe plant PTR/NRT1 (peptide transporter/nitrate transporter 1) gene family comprises di/tripeptide and low-affinity nitrate transporters; some members also recognize other substrates such as carboxylates, phytohormones (auxin and abscisic acid), or defence compounds (glucosinolates). Little is known about the members of this gene family in rice (Oryza sativa L.).
View Article and Find Full Text PDFPi acquisition of crops via arbuscular mycorrhizal (AM) symbiosis is becoming increasingly important due to limited high-grade rock Pi reserves and a demand for environmentally sustainable agriculture. Here, we show that 70% of the overall Pi acquired by rice (Oryza sativa) is delivered via the symbiotic route. To better understand this pathway, we combined genetic, molecular, and physiological approaches to determine the specific functions of two symbiosis-specific members of the PHOSPHATE TRANSPORTER1 (PHT1) gene family from rice, ORYsa;PHT1;11 (PT11) and ORYsa;PHT1;13 (PT13).
View Article and Find Full Text PDFUnlike all other organisms, parasitic protozoa of the family Trypanosomatidae maintain a large cellular pool of proline that, together with the alanine pool, serve as alternative carbon sources as well as reservoirs of organic osmolytes. These reflect adaptation to their insect vectors whose haemolymphs are exceptionally rich in the two amino acids. In the present study we identify and characterize a new neutral amino acid transporter, LdAAP24, that translocates proline and alanine across the Leishmania donovani plasma membrane.
View Article and Find Full Text PDFDi- and tripeptide transporters of the PTR/NRT1 (peptide transporter/nitrate transporter1)-family are localized either at the tonoplast (TP) or plasma membrane (PM). As limited information is available on structural determinants required for targeting of plant membrane proteins, we performed gene shuffling and domain swapping experiments of Arabidopsis PTRs. A 7 amino acid fragment of the hydrophilic N-terminal region of PTR2, PTR4 and PTR6 was required for TP localization and sufficient to redirect not only PM-localized PTR1 or PTR5, but also sucrose transporter SUC2 to the TP.
View Article and Find Full Text PDFMembers of the peptide transporter/nitrate transporter 1 (PTR/NRT1) family in plants transport a variety of substrates like nitrate, di- and tripepetides, auxin and carboxylates. We isolated two members of this family from Arabidopsis, AtPTR4 and AtPTR6, which are highly homologous to the characterized di- and tripeptide transporters AtPTR1, AtPTR2 and AtPTR5. All known substrates of members of the PTR/NRT1 family were tested using heterologous expression in Saccharomyces cerevisiae mutants and oocytes of Xenopus laevis, but none could be identified as substrate of AtPTR4 or AtPTR6.
View Article and Find Full Text PDFThe plant vacuole is the largest compartment in a fully expanded plant cell. While only very limited metabolic activity can be observed within the vacuole, the majority of the hydrolytic activities, including proteolytic activities reside in this organelle. Since it is assumed that protein degradation by the proteasome results in the production of peptides with a size of 3-30 amino acids, we were interested to show whether the tonoplast exhibits a transport activity, which could deliver these peptides into the vacuole for final degradation.
View Article and Find Full Text PDFIn previous studies we characterized arginine transporter genes from Trypanosoma cruzi and Leishmania donovani, the etiological agents of chagas disease and kala azar, respectively, both fatal diseases in humans. Unlike arginine transporters in higher eukaryotes that transport also lysine, these parasite transporters translocate only arginine. This phenomenon prompted us to identify and characterize parasite lysine transporters.
View Article and Find Full Text PDFArsenic is an extremely toxic metalloid causing serious health problems. In Southeast Asia, aquifers providing drinking and agricultural water for tens of millions of people are contaminated with arsenic. To reduce nutritional arsenic intake through the consumption of contaminated plants, identification of the mechanisms for arsenic accumulation and detoxification in plants is a prerequisite.
View Article and Find Full Text PDFTransporters for di- and tripeptides belong to the large and poorly characterized PTR/NRT1 (peptide transporter/nitrate transporter 1) family. A new member of this gene family, AtPTR5, was isolated from Arabidopsis (Arabidopsis thaliana). Expression of AtPTR5 was analyzed and compared with tissue specificity of the closely related AtPTR1 to discern their roles in planta.
View Article and Find Full Text PDFWe describe the first functional and molecular characterization of an amino acid permease (LdAAP3) from the human parasitic protozoan Leishmania donovani, the causative agent of visceral leishmaniasis in humans. This permease contains 480 amino acids with 11 predicted trans-membrane domains. Expressing LdAAP3 in Saccharomyces cerevisiae mutants revealed that LdAAP3 codes for a high-affinity arginine transporter (Km 1.
View Article and Find Full Text PDFProline transporters (ProTs) mediate transport of the compatible solutes Pro, glycine betaine, and the stress-induced compound gamma-aminobutyric acid. A new member of this gene family, AtProT3, was isolated from Arabidopsis (Arabidopsis thaliana), and its properties were compared to AtProT1 and AtProT2. Transient expression of fusions of AtProT and the green fluorescent protein in tobacco (Nicotiana tabacum) protoplasts revealed that all three AtProTs were localized at the plasma membrane.
View Article and Find Full Text PDFFor the efficient translocation of organic nitrogen, small peptides of two to three amino acids are posited as an important alternative to amino acids. A new transporter mediating the uptake of di- and tripeptides was isolated from Arabidopsis thaliana by heterologous complementation of a peptide transport-deficient Saccharomyces cerevisiae mutant. AtPTR1 mediated growth of S.
View Article and Find Full Text PDF