Publications by authors named "Marianne Schulte"

Light, oxygen, voltage (LOV) photoreceptors are widely distributed throughout all kingdoms of life, and have in recent years, due to their modular nature, been broadly used as sensor domains for the construction of optogenetic tools. For understanding photoreceptor function as well as for optogenetic tool design and fine-tuning, a detailed knowledge of the photophysics, photochemistry, and structural changes underlying the LOV signaling paradigm is instrumental. Mutations that alter the lifetime of the photo-adduct signaling state represent a convenient handle to tune LOV sensor on/off kinetics and, thus, steady-state on/off equilibria of the photoreceptor (or optogenetic switch).

View Article and Find Full Text PDF

Airway clearance therapy (ACT) is one of the cornerstone treatment modalities to improve mucociliary clearance for patients with bronchiectasis. The progression of lung disease in patients with bronchiectasis can be evaluated by spirometry and multiple breath washout (MBW) and it is advised to monitor these on a regular basis. However, the short term effect of ACT on spirometry and MBW parameters is insufficiently clear and this variability may impact standardization.

View Article and Find Full Text PDF

2-Deoxyribose-5-phosphate aldolase (DERA) catalyzes the reversible conversion of acetaldehyde and glyceraldehyde-3-phosphate into deoxyribose-5-phosphate. DERA is used as a biocatalyst for the synthesis of drugs such as statins and is a promising pharmaceutical target due to its involvement in nucleotide catabolism. Despite previous biochemical studies suggesting the catalytic importance of the C-terminal tyrosine residue found in several bacterial DERAs, the structural and functional basis of its participation in catalysis remains elusive because the electron density for the last eight to nine residues (i.

View Article and Find Full Text PDF

Sequence alignment of the four WW domains from human Nedd4-1 (neuronal precursor cell expressed developmentally down-regulated gene 4-1) reveals that the highest sequence diversity exists in loop I. Three residues in this type I β-turn interact with the PPxY motif of the human epithelial Na channel (hENaC) subunits, indicating that peptide affinity is defined by the loop I sequence. The third WW domain (WW3*) has the highest ligand affinity and unlike the other three hNedd4-1 WW domains or other WW domains studied contains the highly statistically preferred proline at the ( i + 1) position found in β-turns.

View Article and Find Full Text PDF

Deoxyribose-5-phosphate aldolase (DERA) catalyses the reversible conversion of 2-deoxyribose-5-phosphate (dR5P) into glyceraldehyde-3-phosphate (G3P) and acetaldehyde. For industrial applications, this enzyme is used in organic synthesis for aldol reactions between acetaldehyde as a donor and a wide range of aldehydes as acceptors. Here, we present a near complete set of sequence-specific H, C and N resonance assignments of a 28 kDa monomeric variant of the Escherichia coli DERA.

View Article and Find Full Text PDF

The third WW domain (WW3*) of human Nedd4-1 (Neuronal precursor cell expressed developmentally down-regulated gene 4-1) interacts with the poly-proline (PY) motifs of the human epithelial Na+ channel (hENaC) subunits at micromolar affinity. This data supplements the article (Panwalkar et al., 2015) [1].

View Article and Find Full Text PDF

The four WW domains of human Nedd4-1 (neuronal precursor cell expressed developmentally downregulated gene 4-1) interact with the PPxY (PY) motifs of the human epithelial Na(+) channel (hENaC) subunits, with the third WW domain (WW3*) showing the highest affinity. We have shown previously that the α-hENaC PY motif binding interface of WW3* undergoes conformational exchange on the millisecond time scale, indicating that conformational sampling plays a role in peptide recognition. To further understand this role, the structure and dynamics of hNedd4-1 WW3* were investigated.

View Article and Find Full Text PDF