Publications by authors named "Marianne Maertens"

One well-established characteristic of early visual processing is the contrast sensitivity function (CSF) which describes how sensitivity varies with the spatial frequency (SF) content of the visual input. The CSF prompted the development of a now standard model of spatial vision. It represents the visual input by activity in orientation- and SF selective channels which are nonlinearly recombined to predict a perceptual decision.

View Article and Find Full Text PDF

A key question in perception research is how stimulus variations translate into perceptual magnitudes, that is, the perceptual encoding process. As experimenters, we cannot probe perceptual magnitudes directly, but infer the encoding process from responses obtained in a psychophysical experiment. The most prominent experimental technique to measure perceptual appearance is matching, where observers adjust a probe stimulus to match a target in its appearance along the dimension of interest.

View Article and Find Full Text PDF

Human vision relies on mechanisms that respond to luminance edges in space and time. Most edge models use orientation-selective mechanisms on multiple spatial scales and operate on static inputs assuming that edge processing occurs within a single fixational instance. Recent studies, however, demonstrate functionally relevant temporal modulations of the sensory input due to fixational eye movements.

View Article and Find Full Text PDF

One fundamental question in vision research is how the retinal input is segmented into perceptually relevant variables. A striking example of this segmentation process is transparency perception, in which luminance information in one location contributes to two perceptual variables: the properties of the transparent medium itself and of what is being seen in the background. Previous work by Robilotto et al.

View Article and Find Full Text PDF

A central question in psychophysical research is how perceptual differences between stimuli translate into physical differences and vice versa. Characterizing such a psychophysical scale would reveal how a stimulus is converted into a perceptual event, particularly under changes in viewing conditions (e.g.

View Article and Find Full Text PDF

One central problem in perception research is to understand how internal experiences are linked to physical variables. Most commonly, this relationship is measured using the method of adjustment, but this has two shortcomings: The perceptual scales that relate physical and perceptual variables are not measured directly, and the method often requires perceptual comparisons between viewing conditions. To overcome these problems, we measured perceptual scales of surface lightness using maximum likelihood difference scaling, asking observers only to compare the lightness of surfaces presented in the same context.

View Article and Find Full Text PDF

Maximum likelihood difference scaling (MLDS) is a method for the estimation of perceptual scales based on the judgment of differences in stimulus appearance (Maloney & Yang, 2003). MLDS has recently also been used to estimate near-threshold discrimination performance (Devinck & Knoblauch, 2012). Using MLDS as a psychophysical method for sensitivity estimation is potentially appealing, because MLDS has been reported to need less data than forced-choice procedures, and particularly naive observers report to prefer suprathreshold comparisons to JND-style threshold tasks.

View Article and Find Full Text PDF

It is still an unresolved question how the visual system perceives surface lightness given the ambiguity of the sensory input signal. We studied lightness perception using two-dimensional images of variegated checkerboards shown as perspective projections of three-dimensional objects. We manipulated the contrast of a target check relative to its surround either by rendering the image under different viewing conditions or by introducing noncoincidental changes of the reflectance of the surfaces adjacent to the target.

View Article and Find Full Text PDF

To investigate human viewing behavior on physical realizations of 3D objects, the authors use an eye tracker with scene camera and fiducial markers on 3D objects to gather fixations on the presented stimuli. They use this data to validate assumptions regarding visual saliency that so far have experimentally only been analyzed for flat stimuli. They provide a way to compare fixation sequences from different subjects and developed a model for generating test sequences of fixations unrelated to the stimuli.

View Article and Find Full Text PDF

Spatial filtering models are currently a widely accepted mechanistic account of human lightness perception. Their popularity can be ascribed to two reasons: They correctly predict how human observers perceive a variety of lightness illusions, and the processing steps involved in the models bear an apparent resemblance with known physiological mechanisms at early stages of visual processing. Here, we tested the adequacy of these models by probing their response to stimuli that have been modified by adding narrowband noise.

View Article and Find Full Text PDF

White's illusion is the perceptual effect that two equiluminant gray patches superimposed on a black-and-white square-wave grating appear different in lightness: A test patch placed on a dark stripe of the grating looks lighter than one placed on a light stripe. Although the effect does not depend on the aspect ratio of the test patches, and thus on the amount of border that is shared with either the dark or the light stripe, the context of each patch must, in a yet to be specified way, influence their lightness. We employed a contour adaptation paradigm (Anstis, 2013) to test the contribution of each of the test patches' edges to the perceived lightness of the test patches.

View Article and Find Full Text PDF

Visual perception of object attributes such as surface lightness is crucial for successful interaction with the environment. How the visual system assigns lightness to image regions is not yet understood. It has been shown that the context in which a surface is embedded influences its perceived lightness, but whether that influence involves predominantly low-, mid-, or high-level visual mechanisms has not been resolved.

View Article and Find Full Text PDF

In the present experiment we addressed the question of how the visual system determines surface lightness from luminances in the retinal image. We measured the perceived lightness of target surfaces that were embedded in custom-made checkerboards. The checkerboards consisted of 10 by 10 checks of 10 different reflectance values that were arranged randomly across the board.

View Article and Find Full Text PDF

The present paper deals with the classical question how a psychological experience, in this case apparent lightness, is linked by intervening neural processing to physical variables. We address two methodological issues: (a) how does one know the appropriate physical variable (what is the right x?) to look at, and (b) how can behavioral measurements be used to probe the internal transformation that leads to psychological experience. We measured so-called lightness transfer functions (LTFs), that is the functions that describe the mapping between retinal luminance and perceived lightness for naturalistic checkerboard stimuli.

View Article and Find Full Text PDF

A fundamental question in visual perception research is whether the sensitivity to stimulus differences is limited by the sensory representation of the external stimulus, that is, the proximal stimulus, or by its perceptual representation, i.e., stimulus appearance.

View Article and Find Full Text PDF

Objects in our visual environment are perceived as integral wholes even when their retinal images are incomplete. We ask whether the perceptual precision of subjective interpolation between isolated image parts depends on the overall proportion of visible image information or rather on its geometrical arrangement. We used Varin-type subjective shapes that provide less physical stimulus information than Kanizsa-type figures because partially occluded solid inducers are replaced by partially occluded concentric arcs.

View Article and Find Full Text PDF

There is a distinct visual process that triggers the perception of illusory surfaces and contours along the intersections of aligned, zigzag line patterns. Such illusory contours and surfaces are qualitatively different from illusory contours of the Kanizsa type. The illusory contours and surfaces in this case are not the product of occlusion and do not imply occlusion of one surface by another.

View Article and Find Full Text PDF

Objects in our visual environment are arranged in depth and hence there is a considerable amount of overlap and occlusion in the image they generate on the retina. In order to properly segment the image into figure and background, boundary interpolation is required even across large distances. Here we study the cortical mechanisms involved in collinear contour interpolation using fMRI.

View Article and Find Full Text PDF

Our visual percepts are not fully determined by the physical stimulus input. That is why we perceive crisp bounding contours even in the absence of luminance-defined borders in visual illusions such as the Kanizsa figure. It is important to understand which neural processes are involved in creating these artificial visual experiences because this might tell us how we perceive coherent objects in natural scenes, which are characterized by mutual overlap.

View Article and Find Full Text PDF

Event-related functional magnetic resonance imaging signal change in Heschl's gyrus and the planum temporale was found to reflect sensory decisions about target presence. In a dichotic listening task, activation was higher for target present responses, irrespective of actual target presence. In fact, activation was highest for false alarms, that is, 'present' responses in the absence of a target stimulus, and lowest for missed targets.

View Article and Find Full Text PDF

Perceptual learning involves the specific and relatively permanent modification of perception following a sensory experience. In psychophysical experiments, the specificity of the learning effects to the trained stimulus attributes (e.g.

View Article and Find Full Text PDF

In an event-related fMRI study, we investigated the neural correlates of visual dimension and response changes. We used a compound task, which required target selection by a singleton feature, a unique color or motion direction, before the appropriate motor response, which was determined by target orientation, could be selected. Both types of change elicited distinct patterns of activation, with dimension-change-related activation primarily in posterior visual areas and response-related activation primarily in motor-related areas of the parietal and frontal cortices.

View Article and Find Full Text PDF

With practice, we become increasingly efficient at visual object comparisons. This may be due to the formation of a memory template that not only binds individual features together to create an object, but also links the object with an associated response. In a longitudinal fMRI study of object matching, evidence for this link between perception and action was observed as a shift of activation from visual-attentive processing areas along the posterior intraparietal sulcus to hand-sensory and motor-related areas.

View Article and Find Full Text PDF

Visual matches are sometimes faster when stimuli are presented across visual hemifields, compared to within-field matching. Using a cued geometric figure matching task, we investigated the influence of computational complexity vs. processing efficiency on this bilateral distribution advantage (BDA).

View Article and Find Full Text PDF

The authors found splenial lesions to be associated with left ear suppression in dichotic listening of consonant-vowel syllables. This was found in both a rapid presentation dichotic monitoring task and a standard dichotic listening task, ruling out attentional limitations in the processing of high stimulus loads as a confounding factor. Moreover, directed attention to the left ear did not improve left ear target detection in the patients, independent of callosal lesion location.

View Article and Find Full Text PDF