Publications by authors named "Marianne K H Kim"

Cancers with Ras mutations represent a major therapeutic problem. Recent RNAi screens have uncovered multiple nononcogene addiction pathways that are necessary for the survival of Ras mutant cells. Here, we identify the evolutionarily conserved gene enhancer of rudimentary homolog (ERH), in which depletion causes greater toxicity in cancer cells with mutations in the small GTPase KRAS compared with KRAS WT cells.

View Article and Find Full Text PDF

Sprouty (Spry) proteins are negative regulators of receptor tyrosine kinase signaling; however, their exact mechanism of action remains incompletely understood. We identified phosphatidylinositol-specific phospholipase C (PLC)-γ as a partner of the Spry1 and Spry2 proteins. Spry-PLCγ interaction was dependent on the Src homology 2 domain of PLCγ and a conserved N-terminal tyrosine residue in Spry1 and Spry2.

View Article and Find Full Text PDF

Purpose: To understand the changes in gene expression in polycythemia vera (PV) progenitor cells and their relationship to JAK2V617F.

Experimental Design: Messenger RNA isolated from CD34(+) cells from nine PV patients and normal controls was profiled using Affymetrix arrays. Gene expression change mediated by JAK2V617F was determined by profiling CD34(+) cells transduced with the kinase and by analysis of leukemia cell lines harboring JAK2V617F, treated with an inhibitor.

View Article and Find Full Text PDF

WT1, a critical regulator of kidney development, is a tumor suppressor for nephroblastoma but in some contexts functions as an oncogene. A limited number of direct transcriptional targets of WT1 have been identified to explain its complex roles in tumorigenesis and organogenesis. In this study we performed genome-wide screening for direct WT1 targets, using a combination of ChIP-ChIP and expression arrays.

View Article and Find Full Text PDF

Sequential administration of DNA methyltransferase (DNMT) inhibitors and histone deacetylase (HDAC) inhibitors has demonstrated clinical efficacy in patients with hematologic malignancies. However, the mechanism behind their clinical efficacy remains controversial. In this study, the methylation dynamics of 4 TSGs (p15(INK4B), CDH-1, DAPK-1, and SOCS-1) were studied in sequential bone marrow samples from 30 patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) who completed a minimum of 4 cycles of therapy with 5-azacytidine and entinostat.

View Article and Find Full Text PDF

In its role as a tumor suppressor, WT1 transactivates several genes that are regulators of cell growth and differentiation pathways. For instance, WT1 induces the expression of the cell cycle regulator p21, the growth-regulating glycoprotein amphiregulin, the proapoptotic gene Bak, and the Ras/mitogen-activated protein kinase (MAPK) inhibitor Sprouty1. Here, we show that WT1 transactivates another important negative regulator of the Ras/MAPK pathway, MAPK phosphatase 3 (MKP3).

View Article and Find Full Text PDF

The Wilms tumor gene (WT1) is mutated or deleted in patients with heredofamilial syndromes associated with the development of Wilms tumors, but is infrequently mutated in sporadic Wilms tumors. By comparing the microarray profiles of syndromic versus sporadic Wilms tumors and WT1-inducible Saos-2 osteosarcoma cells, we identified interferon-inducible protein 16 (IFI16), a transcriptional modulator, as a differentially expressed gene and a candidate WT1 target gene. WT1 induction in Saos-2 osteosarcoma cells led to strong induction of IFI16 expression and its promoter activity was responsive to the WT1 protein.

View Article and Find Full Text PDF

Background: Autoregulation of the myc gene family is a negative feedback mechanism known to occur at high levels of Myc expression. Loss of this mechanism and associated Myc overexpression has been observed in human tumors, thereby contributing to tumorigenesis. The childhood tumor neuroblastoma is characterized by N-myc amplification in aggressive and highly proliferative tumors that occur in a subset of patients.

View Article and Find Full Text PDF

Cell culture-based transdominant genetic techniques provide new methods for discovering peptide/RNA modulators of cellular pathways. We applied this technology to isolate a peptide inhibitor of human rhinovirus. A green fluorescent protein (GFP)-scaffolded library of cDNA fragments was expressed in HeLa cells from a retroviral vector and screened for inhibitors of rhinovirus-mediated cell killing.

View Article and Find Full Text PDF

Background: Amplification of the N-myc oncogene is associated with adverse outcomes in the common childhood tumor, neuroblastoma. Because the transforming properties of Myc are related to its ability to modulate gene expression, the authors used cDNA microarrays to identify potential Myc target genes.

Methods: Expression levels of 4608 genes were analyzed in a series of neuroblastoma cell lines.

View Article and Find Full Text PDF