Glioblastoma (GBM) contains a population of stem-like cells that promote tumor invasion and resistance to therapy. Identifying and targeting stem cell factors in GBM may lead to the development of more effective therapies. High Mobility Group AT-hook 2 (HMGA2) is a transcriptional modulator that mediates motility and self-renewal in normal and cancer stem cells.
View Article and Find Full Text PDFNOTCH regulates stem cells during normal development and stemlike cells in cancer, but the roles of NOTCH in the lethal pediatric brain tumor diffuse intrinsic pontine glioma (DIPG) remain unknown. Because DIPGs express stem cell factors such as SOX2 and MYCN, we hypothesized that NOTCH activity would be critical for DIPG growth. We determined that primary DIPGs expressed high levels of NOTCH receptors, ligands, and downstream effectors.
View Article and Find Full Text PDFDiffuse intrinsic pontine glioma (DIPG) is a fatal childhood cancer. We performed a chemical screen in patient-derived DIPG cultures along with RNA-seq analyses and integrated computational modeling to identify potentially effective therapeutic strategies. The multi-histone deacetylase inhibitor panobinostat demonstrated therapeutic efficacy both in vitro and in DIPG orthotopic xenograft models.
View Article and Find Full Text PDFAtypical teratoid rhabdoid tumor (AT/RT) is among the most fatal of all pediatric brain tumors. Aside from loss of function mutations in the SMARCB1 (BAF47/INI1/SNF5) chromatin remodeling gene, little is known of other molecular drivers of AT/RT. LIN28A and LIN28B are stem cell factors that regulate thousands of RNAs and are expressed in aggressive cancers.
View Article and Find Full Text PDFAtypical teratoid/rhabdoid tumor (AT/RT) is an aggressive pediatric central nervous system tumor. The poor prognosis of AT/RT warrants identification of novel therapeutic targets and strategies. High-mobility Group AT-hook 2 (HMGA2) is a developmentally important chromatin-modifying protein that positively regulates tumor growth, self-renewal, and invasion in other cancer types.
View Article and Find Full Text PDFBackground: 3-bromopyruvate (3-BrPA) and dichloroacetate (DCA) are inhibitors of cancer-cell specific aerobic glycolysis. Their application in glioma is limited by 3-BrPA's inability to cross the blood-brain-barrier and DCA's dose-limiting toxicity. The safety and efficacy of intracranial delivery of these compounds were assessed.
View Article and Find Full Text PDFBackground: Previous studies support a role for mitogen-activated protein kinase pathway signaling, and more recently Akt/mammalian target of rapamycin (mTOR), in pediatric low-grade glioma (PLGG), including pilocytic astrocytoma (PA). Here we further evaluate the role of the mTORC1/mTORC2 pathway in order to better direct pharmacologic blockade in these common childhood tumors.
Methods: We studied 177 PLGGs and PAs using immunohistochemistry and tested the effect of mTOR blockade on 2 PLGG cell lines (Res186 and Res259) in vitro.
The cellular reprogramming factor LIN28A promotes tumorigenicity in cancers arising outside the central nervous system, but its role in brain tumors is unknown. We detected LIN28A protein in a subset of human gliomas observed higher expression in glioblastoma (GBM) than in lower grade tumors. Knockdown of LIN28A using lentiviral shRNA in GBM cell lines inhibited their invasion, growth and clonogenicity.
View Article and Find Full Text PDF