The aim of cellular agriculture is to use cell-culturing technologies to produce alternatives to agricultural products. Cultured meat is an example of a cellular agriculture product, made by using tissue engineering methods. This study aims to improve the understanding of the potential environmental impacts of cultured meat production by comparing between different bioprocess design scenarios.
View Article and Find Full Text PDFFront Bioeng Biotechnol
June 2021
Organoids are three-dimensional multicellular tissue constructs. When cultured , they recapitulate the structure, heterogeneity, and function of their counterparts. As awareness of the multiple uses of organoids has grown, .
View Article and Find Full Text PDFJ Biomed Mater Res A
December 2021
Scaffold materials suitable for the scale-up and subsequent commercialization of tissue engineered products should ideally be cost effective and accessible. For the in vitro culture of certain adherent cells, synthetic fabrication techniques are often employed to produce micro- or nano-patterned substrates to influence cell attachment, morphology, and alignment via the mechanism of contact guidance. Here we present a natural scaffold, in the form of decellularized amenity grass, which retains its natural striated topography and supports the attachment, proliferation, alignment and differentiation of murine C2C12 myoblasts, without the need for additional functionalization.
View Article and Find Full Text PDFThis review details the core activity in cellular agriculture conducted in the UK at the end of 2019, based upon a literature review by, and community contacts of the authors. Cellular agriculture is an emergent field in which agricultural products-most typically animal-derived agricultural products-are produced through processes operating at the cellular level, as opposed to (typically farm-based) processes operating at the whole organism level. Figurehead example technologies include meat, leather and milk products manufactured from a cellular level.
View Article and Find Full Text PDFMany studies in the literature have been carried out to evaluate the various cellular and molecular processes involved in osteogenesis.Angiogenesis and bone formation work closely together in this group of disorders. Hypoxia-inducible factor (HIF) which is stimulated in tissue hypoxia triggers a cascade of molecular processes that helps manage this physiological deficiency.
View Article and Find Full Text PDFA mathematical model has been developed to assist with the development of a hollow fibre bioreactor (HFB) for hepatotoxicity testing of xenobiotics; specifically, to inform the HFB operating set-up, interpret data from HFB outputs and aid in optimizing HFB design to mimic certain hepatic physiological conditions. Additionally, the mathematical model has been used to identify the key HFB and compound parameters that will affect xenobiotic clearance. The analysis of this model has produced novel results that allow the operating set-up to be calculated, and predictions of compound clearance to be generated.
View Article and Find Full Text PDFHerein we describe the manufacture and characterisation of biocompatible, porous polystyrene membranes, suitable for cell culture. Though widely used in traditional cell culture, polystyrene has not been used as a hollow fibre membrane due to its hydrophobicity and non-porous structure. Here, we use microcrystalline sodium chloride (4.
View Article and Find Full Text PDFBackground: Cultured meat forms part of the emerging field of cellular agriculture. Still an early stage field it seeks to deliver products traditionally made through livestock rearing in novel forms that require no, or significantly reduced, animal involvement. Key examples include cultured meat, milk, egg white and leather.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
November 2017
Here a zirconium amine tris(phenolate) is used as the initiator for the production of polylactide for biomedical applications, as a replacement for a tin initiator (usually tin octanoate). The ring opening polymerization (ROP) was carried out in the melt at 130°C. The zirconium-catalyzed PLA (PLA-Zr) required 30min, resulting in a polydispersity index (PDI) of 1.
View Article and Find Full Text PDFThis study presents experimental data of a fluidized-bed bioreactor for the cultivation of encapsulated pancreatic beta-cells. The fluidization quality for the bioreactor was evaluated at different flow rate using bed-expansion parameters. Homogeneous distribution of microcapsules was achieved at a flow rate of 2000 μL/min.
View Article and Find Full Text PDFTissue culture has been used for over 100 years to study cells and responses ex vivo. The convention of this technique is the growth of anchorage dependent cells on the 2-dimensional surface of tissue culture plastic. More recently, there is a growing body of data demonstrating more in vivo-like behaviors of cells grown in 3-dimensional culture systems.
View Article and Find Full Text PDFThe scale-up of tissue engineering cell culture must ensure that conditions are maintained while also being cost effective. Here we analyse the stability of hepatocyte growth factor (HGF) to investigate whether concentrations change under dynamic conditions, and compare commercial recombinant human HGF as an additive in 'standard medium', to HGF secreted by the osteosarcoma cell line MG63 as a 'preconditioned medium'. After 3 h under flow conditions, HGF in the standard medium degraded to 40% of its original concentration but HGF in the preconditioned medium remained at 100%.
View Article and Find Full Text PDFThe need for efficient and controlled expansion of cell populations is paramount in tissue engineering. Hollow fibre bioreactors (HFBs) have the potential to meet this need, but only with improved understanding of how operating conditions and cell seeding strategy affect cell proliferation in the bioreactor. This study is designed to assess the effects of two key operating parameters (the flow rate of culture medium into the fibre lumen and the fluid pressure imposed at the lumen outlet), together with the cell seeding distribution, on cell population growth in a single-fibre HFB.
View Article and Find Full Text PDFBiotechnol Lett
December 2014
Hollow fibre membrane bioreactors (HFB) provide a novel approach towards tissue engineering applications in the field of regenerative medicine. For adherent cell types, HFBs offer an in vivo-like microenvironment as each fibre replicates a blood capillary and the mass transfer rate across the wall is independent from the shear stresses experienced by the cell. HFB also possesses the highest surface area to volume ratio of all bioreactor configurations.
View Article and Find Full Text PDFToxicol Res (Camb)
January 2013
The focus of much scientific and medical research is directed towards understanding the disease process and defining therapeutic intervention strategies. The scientific basis of drug safety is very complex and currently remains poorly understood, despite the fact that adverse drug reactions (ADRs) are a major health concern and a serious impediment to development of new medicines. Toxicity issues account for ∼21% drug attrition during drug development and safety testing strategies require considerable animal use.
View Article and Find Full Text PDFBioartificial livers have yet to gain clinical acceptance. In a previous study, a theoretical model was utilized to create operating region charts that graphically illustrated viable bioartificial liver configurations. On this basis a rationale for the choice of operating and design parameters for the device was created.
View Article and Find Full Text PDFOne-step surfactant-free, water-droplet templating has been developed as a fabrication method for a poly(lactide-co-glycolide) (PLGA) film that can be used as a model to investigate the relationship between solvent, monomer ratio, polymer concentration and humidity on its structure. The resulting material is a honeycomb-structured film. Formation of this structure was highly sensitive to solvent, monomer ratio, polymer concentration and humidity.
View Article and Find Full Text PDFBioartificial livers (BALs) are a potentially effective countermeasure against liver failure, particularly in cases of acute or fulminant liver failure. It is hoped these devices can sustain a patient's liver function until recovery or transplant. However, no large-scale clinical trial has yet proven that BALs are particularly effective and evidently design issues remain to be addressed.
View Article and Find Full Text PDFThe interactions of post-culture treatments reagents used for fixing, lysing and cell quantification on poly(lactide-co-glycolide) (PLGA) flat sheet membrane scaffolds are presented. Lysing with Alkaline buffer solution/Triton X-100/MilliQ water (ATM) and fixing with 10% Neutral Buffered Formalin (10% NBF) had no affect on membrane structure while fixing with 95% ethanol caused smoothing of the surface, shrinkage and a reduction in surface area of 55, 48 and 33, for 100:0, 75:25 and 50:50 (PLA:PGA), respectively. PicoGreen assay was selected for cell (560pZIPv.
View Article and Find Full Text PDFWe develop a simple mathematical model for forced flow of culture medium through a porous scaffold in a tissue-engineering bioreactor. Porous-walled hollow fibres penetrate the scaffold and act as additional sources of culture medium. The model, based on Darcy's law, is used to examine the nutrient and shear-stress distributions throughout the scaffold.
View Article and Find Full Text PDFProviding a scaffold that can supply nutrients on a large scale (several cubic centimeters) is the key to successfully regenerating vascularized tissue: biodegradable membranes are a promising new scaffold suited to this purpose. Poly(lactic-co-glycolic-acid) (PLGA) flat sheet membranes of different lactide:glycolide ratios, prepared by phase inversion using 1-methyl-2-pyrrolidinone (NMP) as the solvent and water as the nonsolvent, were compared by assessing attachment, proliferation and osteogenic function of human bone derived cells (HBDC). Three different lactide:glycolide ratios, 50:50, 75:25, and 100:0, were compared to tissue culture polystyrene (TCPS).
View Article and Find Full Text PDFStrategies to expand human bone marrow stromal cells (HBMSC) for bone tissue engineering are a key to revolutionising the processes involved in three-dimensional skeletal tissue reconstruction. To facilitate this process we believe the use of biodegradable porous poly(DL-lactide-co-glycolide) (PDL LGA) hollow fibres as a scaffold used in combination with HBMSC to initiate natural bone repair and regeneration offers a potential solution. In this study, the biocompatibility of 75:25 PDL LGA fibres with HBMSC and the capacity of a PDL LGA fibre-associated HBMSC-monolayer to establish an osteogenic phenotype in vivo was examined.
View Article and Find Full Text PDFWhile methods for the production of scaffolds with the appropriate mechanical properties and architecture for tissue engineering are attracting much attention, the effects of subsequent sterilization processes on the scaffold properties have often been overlooked. This study sought to determine the effects of sterilization with ethanol, peracetic acid, ultraviolet irradiation, and antibiotic solution on the structure of 50:50 (mol:mol) 65:35, and 85:15 poly(D,L-lactic-co-glycolic acid [PLGA]) flat-sheet and hollow-fiber scaffolds. All methods resulted in scaffold sterilization, but scanning electron microscopy revealed deformations to the scaffold surface for all treatments.
View Article and Find Full Text PDFBiotechnol Bioeng
January 2007
Mass transfer limitations of scaffolds are currently hindering the development of 3-dimensional, clinically viable, tissue engineered constructs. We have developed a poly(lactide-co-glycolide) (PLGA) hollow fibre membrane scaffold that will provide support for cell culture, allow psuedovascularisation in vitro and provide channels for angiogenesis in vivo. We produced P(DL)LGA flat sheet membranes using 1, 4-dioxane and 1-methyl-2-pyrrolidinone (NMP) as solvents and water as the nonsolvent, and hollow fibre membranes, using NMP and water, by dry/wet- and wet-spinning.
View Article and Find Full Text PDF