Publications by authors named "Marianne D Sadar"

The androgen receptor (AR) is a modular transcription factor which functions as a master regulator of gene expression. AR protein is composed of three functional domains; the ligand-binding domain (LBD); DNA-binding domain (DBD); and the intrinsically disordered N-terminal transactivation domain (TAD). AR is transactivated upon binding to the male sex hormone testosterone and other androgens.

View Article and Find Full Text PDF

Hybrid genome-mining/N-NMR was used to target compounds containing piperazate (Piz) residues, leading to the discovery of caveamides A () and B () from sp. strain BE230, isolated from New Rankin Cave (Missouri). Caveamides are highly dynamic molecules containing an unprecedented β-ketoamide polyketide fragment, two Piz residues, and a new -methyl-cyclohexenylalanine residue.

View Article and Find Full Text PDF

Breast cancer is a major cause of death worldwide. The complexity of endocrine regulation in breast cancer may allow the cancer cells to escape from a particular treatment and result in resistant and aggressive disease. These breast cancers usually have fewer treatment options.

View Article and Find Full Text PDF

Transcription factors are among the most attractive therapeutic targets but are considered largely 'undruggable' in part due to the intrinsically disordered nature of their activation domains. Here we show that the aromatic character of the activation domain of the androgen receptor, a therapeutic target for castration-resistant prostate cancer, is key for its activity as transcription factor, allowing it to translocate to the nucleus and partition into transcriptional condensates upon activation by androgens. On the basis of our understanding of the interactions stabilizing such condensates and of the structure that the domain adopts upon condensation, we optimized the structure of a small-molecule inhibitor previously identified by phenotypic screening.

View Article and Find Full Text PDF

This chapter focuses on the development of drugs targeting the N-terminal domain of nuclear hormone receptors, using progress with the androgen receptor as an example. Historically, development of therapies targeting nuclear hormone receptors has focused on the folded C-terminal ligand-binding domain. Therapies were traditionally not developed to target the intrinsically disordered N-terminal domain as it was considered "undruggable".

View Article and Find Full Text PDF

Hormonal therapies for prostate cancer target the androgen receptor (AR) ligand-binding domain (LBD). Clinical development for inhibitors that bind to the N-terminal domain (NTD) of AR has yielded ralaniten and its analogues. Ralaniten acetate is well tolerated in patients at 3600 mgs/day.

View Article and Find Full Text PDF

Androgen receptor (AR) has essential roles in the growth of prostate cancer and some breast cancers. Inhibition of AR transcriptional activity by targeting its N-terminal domain with ralaniten or an analog such as EPI-7170 causes accumulation of cells in the G-phase of the cell cycle. Inhibition of cyclin-dependent kinases 4/6 with palbociclib also leads to accumulation of cells in the G-phase.

View Article and Find Full Text PDF

Therapies for lethal castration-resistant prostate cancer (CRPC) are an unmet medical need. One mechanism underlying CRPC and resistance to hormonal therapies is the expression of constitutively active splice variant(s) of androgen receptor (AR-Vs) that lack its C-terminus ligand-binding domain. Transcriptional activities of AR-Vs and full-length AR reside in its N-terminal domain (NTD).

View Article and Find Full Text PDF

Synthetic analogues of the marine natural product sintokamides have been prepared in order to investigate the structure-activity relationships for the androgen receptor N-terminal domain (AR NTD) antagonist activity of the sintokamide scaffold. An LNCaP cell-based transcriptional activity assay with an androgen-driven luciferase (Luc) reporter was used to monitor the potency of analogues. The data have shown that the chlorine atoms on the leucine side chains are essential for potent activity.

View Article and Find Full Text PDF

The androgen receptor (AR) is a validated therapeutic target for prostate cancer and has been a focus for drug development for more than six decades. Currently approved therapies that inhibit AR signaling, such as enzalutamide, rely solely on targeting the AR ligand-binding domain and, therefore, have limited efficacy on prostate cancer cells that express truncated, constitutively active AR splice variants (AR-Vs). The LNCaP95 cell line is a human prostate cancer cell line that expresses both functional full-length AR and AR-V7.

View Article and Find Full Text PDF

Resistance of castration-resistant prostate cancer (CRPC) to enzalutamide and abiraterone involves the expression of constitutively active, truncated androgen receptor (AR) splice variants (AR-Vs) that lack a C-terminal ligand-binding domain (LBD). Both full-length AR and truncated AR-Vs require a functional N-terminal domain (NTD) for transcriptional activity thereby providing rationale for the development of ralaniten (EPI-002) as a first-in-class antagonist of the AR-NTD. Here, we evaluated the antitumor effect of a next-generation analog of ralaniten (EPI-7170) as a monotherapy or in combination with enzalutamide in prostate cancer cells that express AR-V7 that were resistant to enzalutamide.

View Article and Find Full Text PDF

Blocking androgen receptor (AR) transcriptional activity by androgen deprivation therapy (ADT) improves the response to radiotherapy for intermediate and high risk prostate cancer. Unfortunately, ADT, antiandrogens, and abiraterone increase expression of constitutively active splice variants of AR (AR-Vs) which regulate DNA damage repair leading to resistance to radiotherapy. Here we investigate whether blocking the transcriptional activities of full-length AR and AR-Vs with ralaniten leads to enhanced sensitivity to radiotherapy.

View Article and Find Full Text PDF

Methods for the focused isolation of low-abundance natural products with specific chemical substructures could expand known bioactive chemical diversity for drug discovery. Here we report the combined use of genome mining and an N NMR-based screening method for the targeted isolation of the low-abundance piperazic-acid-containing peptides incarnatapeptins A () and B (). Incarnatapeptin B () shows cytotoxicity to LNCaP prostate cancer cells.

View Article and Find Full Text PDF

Inhibition of the androgen receptor (AR) is the mainstay treatment for advanced prostate cancer. Ralaniten (formally EPI-002) prevents AR transcriptional activity by binding to its N-terminal domain (NTD) which is essential for transcriptional activity. Ralaniten acetate (EPI-506) the triacetate pro-drug of ralaniten, remains the only AR-NTD inhibitor to have entered clinical trials (NCT02606123).

View Article and Find Full Text PDF

: Intrinsically disordered proteins (IDPs) and regions (IDRs) lack stable three-dimensional structure making drug discovery challenging. A validated therapeutic target for diseases such as prostate cancer is the androgen receptor (AR) which has a disordered amino-terminal domain (NTD) that contains all of its transcriptional activity. Drug discovery against the AR-NTD is of intense interest as a potential treatment for disease such as advanced prostate cancer that is driven by truncated constitutively active splice variants of AR that lack the C-terminal ligand-binding domain (LBD).

View Article and Find Full Text PDF

The androgen receptor (AR) is tightly linked to prostate cancer, but the mechanisms by which AR transactivation is dysregulated during cancer progression are not fully explored. Dagar examined AR translocation to the nucleus to identify a link between heat shock protein 90 (HSP90) and protein kinase A (PKA). Their findings provide a potential mechanism of the initiation of AR transactivation and potential targets for developing and refining treatments for prostate cancer.

View Article and Find Full Text PDF

Expression of androgen receptor (AR) splice variant 7 (AR-V7) has been identified as the mechanism associated with the development of castration-resistant prostate cancer (CRPC). However, a potential link between AR-V7 expression and resistance to taxanes, such as docetaxel or cabazitaxel, has not been unequivocally demonstrated. To address this, we used LNCaP95-DR cells, which express AR-V7 and exhibit resistance to enzalutamide and docetaxel.

View Article and Find Full Text PDF

Enzalutamide is a nonsteroidal antiandrogen for the treatment of metastatic castration-resistant prostate cancer (mCRPC) both before and after chemotherapy. Enzalutamide is more effective than its predecessor bicalutamide, which was analyzed in head-to-head studies of patients with CRPC. This family of nonsteroidal antiandrogens is now comprised of four drugs approved by the US Food and Drug Administration with two investigational drugs in clinical trials.

View Article and Find Full Text PDF

The transcriptional activity of the androgen receptor is tightly regulated by an intrinsically disordered N-terminal transactivation domain. In this issue of Structure, De Mol et al. (2018) identify a motif in the disordered transactivation domain that can be induced to adopt a helical conformation essential for interaction with the transcriptional machinery.

View Article and Find Full Text PDF

Androgen receptor (AR) is a member of the steroid receptor family and a therapeutic target for all stages of prostate cancer. AR is activated by ligand binding within its C-terminus ligand-binding domain (LBD). Here we show that overexpression of the AR NTD to generate decoy molecules inhibited both the growth and progression of prostate cancer in castrated hosts.

View Article and Find Full Text PDF

Androgen receptor (AR) is a validated drug target for prostate cancer based on its role in proliferation, survival, and metastases of prostate cancer cells. Unfortunately, despite recent improvements to androgen deprivation therapy and the advent of better antiandrogens with a superior affinity for the AR ligand-binding domain (LBD), most patients with recurrent disease will eventually develop lethal metastatic castration-resistant prostate cancer (CRPC). Expression of constitutively active AR splice variants that lack the LBD contribute toward therapeutic resistance by bypassing androgen blockade and antiandrogens.

View Article and Find Full Text PDF

Unlabelled: : Despite the recent approval and widespread use of abiraterone acetate and enzalutamide for the treatment of castration-resistant prostate cancer (CRPC), this disease still poses significant management challenges because of various tumor escape mechanisms, including those that allow androgen receptor (AR) signaling to remain active. These AR-related resistance mechanisms include AR gene amplification or overexpression, constitutively active ligand-independent AR splice variants, and gain-of-function mutations involving the AR ligand-binding domain (LBD), among others. Therefore, the development of AR-targeted therapies that function independently of the LBD represents an unmet medical need and has the potential to overcome many of these resistance mechanisms.

View Article and Find Full Text PDF

Androgen receptor (AR) is a validated drug target for all stages of prostate cancer including metastatic castration-resistant prostate cancer (CRPC). All current hormone therapies for CRPC target the C-terminal ligand-binding domain of AR and ultimately all fail with resumed AR transcriptional activity. Within the AR N-terminal domain (NTD) is activation function-1 (AF-1) that is essential for AR transcriptional activity.

View Article and Find Full Text PDF