Adipose tissue-derived mesenchymal stem cells (ATSCs) have been used as an alternative to bone marrow-derived mesenchymal stem cells (BMSCs) for bone tissue engineering applications. The ability of ATSCs to promote new bone formation remains lower than that of BMSCs. This study aimed to investigate the mechanisms underlying osteogenicity differences between human ATSCs and BMSCs in ceramic constructs, focusing on the effects of inflammation on this process.
View Article and Find Full Text PDFThe architectural features of synthetic bone grafts are key parameters for regulating cell functions and tissue formation for the successful repair of bone defects. In this regard, macroporous structures based on triply-periodic minimal surfaces (TPMS) are considered to have untapped potential. In the present study, custom-made implants based on a gyroid structure, with (GPRC) and without (GP) a cortical-like reinforcement, were specifically designed to fit an intended bone defect in rat femurs.
View Article and Find Full Text PDFA strategy for improving the efficacy of stem cell-based bone tissue engineering (TE) constructs is to combine bone morphogenetic protein-2 (BMP-2) with multipotent stromal cells (MSC). Previous studies on the potential cooperative effect of BMP-2 with human multipotent stromal cells (hMSCs) on bone formation have, however, shown contradictory results likely due to the various and/or inappropriate BMP-2 doses. Our results provided evidence that the addition of BMP-2 at low dose only was beneficial to improve the osteogenic potential of hMSCs-containing TE constructs, whereas BMP-2 delivered at high dose overcame the advantage of combining this growth factor with hMSCs.
View Article and Find Full Text PDFIn the present study, we evaluated the benefits of an adipogenic predifferentiation, the pathway most closely related to osteoblastogenesis, on the pro-osteogenic potential of human adult multipotent bone marrow stromal cells (hBMSCs), both in vitro and in vivo. Adipogenic differentiation of hBMSCs for 14 days resulted in a heterogeneous cell population from which the most adipogenic-committed cells were eliminated by their lack of readhesion ability. Our results provided evidence that the select adherent adipogenic differentiated hBMSCs (sAD+ cells) express a gene profile characteristic of both adipogenic and osteogenic lineages.
View Article and Find Full Text PDFThe present study aimed at elucidating the effect of local pH in the extracellular microenvironment of tissue-engineered (TE) constructs on bone cell functions pertinent to new tissue formation. To this aim, we evaluated the osteogenicity process associated with bone constructs prepared from human Bone marrow-derived mesenchymal stem cells (hBMSC) combined with 45S5 bioactive glass (BG), a material that induces alkalinization of the external medium. The pH measured in cell-containing BG constructs was around 8.
View Article and Find Full Text PDFLocal tissue ischemia is a prime cause responsible for the massive cell death in tissue-engineered (TE) constructs observed postimplantation. To assess the impact of ischemia on the death of implanted human multipotent stromal cells (hMSCs), which have great potential for repairing damaged tissues, we hereby investigated the in vivo temporal and spatial fate of human Luc-GFP-labeled MSCs within fibrin gel/coral scaffolds subcutaneously implanted in nude mice. In vivo bioluminescence imaging monitoring and histological analyses of the constructs tested confirmed the irremediable death of hMSCs over 30 days postimplantation.
View Article and Find Full Text PDFBioluminescent quantification of viable cells inside three-dimensional porous scaffolds was performed in vitro and in vivo. The assay quantified the bioluminescence of murine stem (C3H10T1/2) cells tagged with the luciferase gene reporter and distributed inside scaffolds of either soft, translucent, AN69 polymeric hydrogel or hard, opaque, coral ceramic materials. Quantitative evaluation of bioluminescence emitted from tagged cells adhering to these scaffolds was performed in situ using either cell lysates and a luminometer or intact cells and a bioluminescence imaging system.
View Article and Find Full Text PDF