Publications by authors named "Marianne Bernard"

Lipid droplets (LD) are storage sites for neutral lipids that can be used as a source of energy during nutrient starvation, but also function as hubs for fatty acid (FA) trafficking between organelles. In the yeast Saccharomyces cerevisiae, the absence of LD causes a severe disorganization of the endomembrane network during starvation. Here we show that cells devoid of LD respond to amino acid (AA) starvation by activating the serine/threonine phosphatase calcineurin and the nuclear translocation of its target protein Crz1.

View Article and Find Full Text PDF
Article Synopsis
  • * In a study comparing muscle cells derived from DMD patients' induced pluripotent stem cells (hiPSC-skMCs) to healthy cells, DMD cells exhibited higher spontaneous and stimulated calcium responses.
  • * The findings indicate that while calcium dysregulation is a hallmark of DMD cells, not all previously identified mechanisms in animal models apply to human cells, suggesting potential directions for targeted therapies.
View Article and Find Full Text PDF
Article Synopsis
  • Lipid droplets are storage organelles found in eukaryotic cells, like yeast, and are not essential for normal growth, but they become important during nitrogen starvation for processes like autophagy and maintaining endoplasmic reticulum (ER) balance.
  • Autophagy helps break down harmful proteins and organelles and can be induced by rapamycin, but lipid droplet-deficient yeast cannot effectively autophagy during amino acid starvation.
  • The study shows that enhancing mitochondrial function can restore autophagy in lipid droplet-deficient yeast, revealing a new connection between lipid droplets, ER, and mitochondria during nutrient scarcity.
View Article and Find Full Text PDF

Macroautophagy is a degradative pathway whereby cells encapsulate and degrade cytoplasmic material within endogenously-built membranes. Previous studies have suggested that autophagosome membranes originate from lipid droplets. However, it was recently shown that rapamycin could induce autophagy in cells lacking these organelles.

View Article and Find Full Text PDF

Canthinones are natural substances with a wide range of biological activities, including antipyretic, antiparasitic, and antimicrobial. Antiproliferative and/or cytotoxic effects of canthinones on cancer cells have also been described, although their mechanism of action remains ill defined. To gain better insight into this mechanism, the antiproliferative effect of a commercially available canthin-6-one (1) was examined dose-dependently on six cancer cell lines (human prostate, PC-3; human colon, HT-29; human lymphocyte, Jurkat; human cervix, HeLa; rat glioma, C6; and mouse embryonic fibroblasts, NIH-3T3).

View Article and Find Full Text PDF

This study reports that the spontaneous 50-fold activation of rhodopsin gene transcription, observed in cultured retinal precursors from 13-day chicken embryo, relies on a Ca(2+)-dependent mechanism. Activation of a transiently transfected rhodopsin promoter (luciferase reporter) in these cells was inhibited (60%) by cotransfection of a dominant-negative form of the cAMP-responsive element-binding protein. Both rhodopsin promoter activity and rhodopsin mRNA accumulation were blocked by Ca(2+)/calmodulin-dependent kinase II inhibitors, but not by protein kinase A inhibitors, suggesting a role of Ca(2+) rather than cAMP.

View Article and Find Full Text PDF

Screening for suppressors of canthin-6-one toxicity in yeast identified Yap1, a transcription factor involved in cell response to a broad range of injuries. Although canthin-6-one did not promote a significant oxidative stress, overexpression of YAP1 gene clearly increased resistance to this drug. We demonstrated that Yap1-mediated resistance involves the plasma membrane major-facilitator-superfamily efflux pump Flr1 but not the vacuolar ATP-binding-cassette transporter Ycf1.

View Article and Find Full Text PDF

Stimulation of tyrosine hydroxylase (TH) gene transcription by cyclic AMP (cAMP) has been clearly established in adrenal medula cells and neural-crest-derived cell lines but information on this mechanism is still lacking in dopaminergic neurons. Because they are easily amenable to in vitro experiments, dopaminergic amacrine cells of the retina might constitute a valuable model system to study this mechanism. We have used real-time reverse transcription with the polymerase chain reaction to quantify TH mRNA levels in the rat retina during post-natal development and in retinal precursor cells obtained from neonatal rats and cultured for 3 days in serum-free medium.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to compare the accuracy of two self-performed tests for bacterial vaginosis (BV) with clinician-performed tests and assess trust levels in both testing methods among young women.
  • Results showed that all participants accurately performed self-BV tests, with good agreement between self-tests and clinician tests; however, sensitivity and specificity varied between the different self-testing methods.
  • Trust in self-testing improved after participants conducted the tests and discussed their results, suggesting that while self-testing has potential, young women may still prefer clinician validation.
View Article and Find Full Text PDF

The present study describes a robust 50-fold increase in rhodopsin gene transcription by cAMP in cultured retinal precursor cells of chicken embryo. Retinal cells isolated at embryonic day 8 (E8) and cultured for 3 days in serum-supplemented medium differentiated mostly into red-sensitive cones and to a lesser degree into green-sensitive cones, as indicated by real-time RT-PCR quantification of each specific opsin mRNA. In contrast, both rhodopsin mRNA concentration and rhodopsin gene promoter activity required the presence of cAMP-increasing agents [forskolin and 3-isobutyl-1-methylxanthine (IBMX)] to reach significant levels.

View Article and Find Full Text PDF

The zinc-finger transcription factor Yin Yang 1 (YY1) is a multifunctional protein that plays a critical role in embryonic development. Although it has been shown to play a role in eye development, its expression in the retina was not previously described. Here, we investigated YY1 expression in chicken tissues and we identified the neural retina as one of the tissues with highest YY1 protein levels.

View Article and Find Full Text PDF

The gene encoding the last enzyme of the melatonin-synthesis pathway, hydroxyindole-O-methyltransferase (HIOMT), is selectively expressed in retinal photoreceptors and pineal cells. Here, we analysed the promoter of the chicken HIOMT gene and we found that a homeodomain-binding element located in the proximal region of this promoter was essential for its activation in primary cultures of embryonic chicken retinal cells. This homeodomain-regulatory element interacted with a protein expressed in the chicken retina and pineal gland, which was recognized by an anti-Otx2 antiserum.

View Article and Find Full Text PDF

Purpose: Photoreceptor differentiation involves the activation of two specific sets of genes; those encoding the proteins of the phototransduction cascade and those encoding the enzymes of the melatonin synthesis pathway, arylalkylamine N-acetyltransferase (AANAT) and hydroxyindole O-methyltransferase (HIOMT). The purpose of the present study was to examine the conditions of AANAT and HIOMT gene activation, relative to that of selected phototransduction markers (alpha-transducin and opsins), in both in vivo and in vitro differentiating photoreceptors of the chicken retina.

Methods: Neural retina RNA was obtained between embryonic day 7 (E7) and posthatch day 8 (P8) and analyzed on northern blots with cDNA probes to AANAT, HIOMT, visinin, alpha-transducin, rhodopsin, and the four cone opsins.

View Article and Find Full Text PDF